Forthcoming

Geometric influence of entry angle and contraction ratio on droplet regime transition from trap to squeeze in microchannel

Author affiliations

Authors

  • Van Thanh Hoang Department of Mechanical Engineering, The University of Danang - University of Science and Technology, 54 Nguyen Luong Bang street, Danang City 50000, Vietnam
  • Thanh Tung Nguyen Department of Mechanical Engineering, The University of Danang - University of Science and Technology, 54 Nguyen Luong Bang street, Danang City 50000, Vietnam https://orcid.org/0009-0003-4164-9033
  • Hong Vinh Pham Department of Mechanical Engineering, The University of Danang - University of Science and Technology, 54 Nguyen Luong Bang street, Danang City 50000, Vietnam https://orcid.org/0009-0000-0105-8755

DOI:

https://doi.org/10.15625/0866-7136/20921

Keywords:

capillary number, microfluidic, contraction ratio, numerical model, entry geometry

Abstract

To precisely control and manipulate the main droplet within a microfluidic system, aside from modifying the flow characteristics and liquid properties, the geometric design of the microchannel also plays a crucial role in the droplet dynamics. Three main regimes are observed in a droplet in a contraction microchannel: trap, squeeze, and breakup. This study employs theoretical and three-dimensional numerical models to assess how two geometric parameters of the microchannel, namely the entry angle (α) and the contraction ratio (C), influence the critical capillary number (Ca) for droplet dynamics of trap-squeeze regime transition. The model's predictions align perfectly with simulation results. Additionally, the study investigates the impact of the entry angle on droplet deformation.

Downloads

Download data is not yet available.

References

[1] J. Castillo-Leon and W. E. Svendsen. Lab-on-a-chip devices and micro-total analysis systems: A practical guide. Springer International Publishing, (2015). https://doi.org/10.1007/978-3-319- 08687-3.

[2] E. Y. Basova and F. Foret. Droplet microfluidics in (bio)chemical analysis. The Analyst, 140, (1), (2015), pp. 22–38. https://doi.org/10.1039/c4an01209g.

[3] J. H. Xu, J. Tan, S. W. Li, and G. S. Luo. Enhancement of mass transfer performance of liquid–liquid system by droplet flow in microchannels. Chemical Engineering Journal, 141, (2008), pp. 242–249. https://doi.org/10.1016/j.cej.2007.12.030.

[4] G. C. Randall, K. M. Schultz, and P. S. Doyle. Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. Lab on a Chip, 6, (4), (2006), pp. 516–525. https://doi.org/10.1039/b515326c.

[5] S. L. Anna, N. Bontoux, and H. A. Stone. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 82, (2003), pp. 364–366. https://doi.org/10.1063/1.1537519.

[6] Z. Zhang, J. Xu, B. Hong, and X. Chen. The effects of 3D channel geometry on CTC passing pressure – towards deformability-based cancer cell separation. Lab on a Chip, 14, (14), (2014), pp. 2576–2584. https://doi.org/10.1039/c4lc00301b.

[7] C. J. Pipe and G. H. McKinley. Microfluidic rheometry. Mechanics Research Communications, 36, (2009), pp. 110–120. https://doi.org/10.1016/j.mechrescom.2008.08.009.

[8] Z. Zhang, X. Chen, and J. Xu. Entry effects of droplet in a micro confinement: Implications for deformation-based circulating tumor cell microfiltration. Biomicrofluidics, 9, (2015). https://doi.org/10.1063/1.4916645.

[9] M. K. Mulligan and J. P. Rothstein. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows. Langmuir, 27, (2011), pp. 9760–9768. https://doi.org/10.1021/la201523r.

[10] V. T. Hoang, J. Lim, C. Byon, and J. M. Park. Three-dimensional simulation of droplet dynamics in planar contraction microchannel. Chemical Engineering Science, 176, (2018), pp. 59–65. https://doi.org/10.1016/j.ces.2017.10.020.

[11] L. H. T. Do, T. T. Nguyen, V. T. Hoang, and M. S. Tran. Geometric influence of width ratio and contraction ratio on droplet dynamics in microchannel using a 3D numerical simulation. Heat Transfer, 53, (2024), pp. 2934–2947. https://doi.org/10.1002/htj.23066.

[12] L. H. T. Do, T. T. Nguyen, V. T. Hoang, and J.-W. Lee. Simultaneous influence of contact angle, capillary number, and contraction ratio on droplet dynamics in hydrophobic microchannel. Fluid Dynamics Research, 56, (2024). https://doi.org/10.1088/1873-7005/ad4a2b.

[13] D. J. E. Harvie, M. R. Davidson, J. J. Cooper-White, and M. Rudman. A parametric study of droplet deformation through a microfluidic contraction. ANZIAM Journal, 46, (2005). https://doi.org/10.21914/anziamj.v46i0.953.

[14] V. T. Hoang, T. T. Nguyen, B.-T. Truong-Le, and T. A. Vo. Simultaneous effects of capillary number, viscosity ratio, and contraction ratio on droplet dynamics in contraction microchannel. Journal of Micromechanics and Microengineering, 34, (2024). https://doi.org/10.1088/1361-6439/ad6f1b.

[15] T. T. Nguyen and V. T. Hoang. Regime dynamics of droplet behavior in hydrophilic contraction microchannel. Chemical Papers, 79, (2025), pp. 2337–2345. https://doi.org/10.1007/s11696-025-03928-6.

[16] R. E. Khayat, A. Luciani, and L. A. Utracki. Boundary-element analysis of planar drop deformation in confined flow. Part 1. Newtonian fluids. Engineering Analysis with Boundary Elements, 19, (1997), pp. 279–289. https://doi.org/10.1016/s0955-7997(97)00040-4.

[17] C.-K. Chung, J.-M. Kim, K.-H. Ahn, and S.-J. Lee. Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel. Korea-Australia Rheology Journal, 21, (1), (2009), pp. 59–69.

[18] I.-L. Ngo, T.-D. Dang, C. Byon, and S. W. Joo. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction. Biomicrofluidics, 9, (2015). https://doi.org/10.1063/1.4916228.

[19] D. J. E. Harvie, J. J. Cooper-White, and M. R. Davidson. Deformation of a viscoelastic droplet passing through a microfluidic contraction. Journal of Non-Newtonian Fluid Mechanics, 155, (2008), pp. 67–79. https://doi.org/10.1016/j.jnnfm.2008.05.002.

[20] N. Ioannou, H. Liu, and Y. H. Zhang. Droplet dynamics in confinement. Journal of Computational Science, 17, (2016), pp. 463–474. https://doi.org/10.1016/j.jocs.2016.03.009.

[21] S. Guido and M. Villone. Three-dimensional shape of a drop under simple shear flow. Journal of Rheology, 42, (1998), pp. 395–415. https://doi.org/10.1122/1.550942.

[22] M. R. Kennedy, C. Pozrikidis, and R. Skalak. Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Computers & Fluids, 23, (1994), pp. 251– 278. https://doi.org/10.1016/0045-7930(94)90040-x.

[23] T. T. Nguyen, V. T. Hoang, D. B. Luu, N. H. Tran, M. S. Tran, and L. H. T. Do. Study on the velocity of droplet at steady state in contraction microchannels by numerical simulation. Vietnam Journal of Mechanics, 45, (2023), pp. 287–295. https://doi.org/10.15625/0866-7136/18918.

[24] V. T. Hoang, V. D. Le, J. M. Park, and B.-T. Truong-Le. Effect of entry geometry on droplet dynamics in contraction microchannel. International Journal of Multiphase Flow, 167, (2023). https://doi.org/10.1016/j.ijmultiphaseflow.2023.104543.

[25] X.-B. Li, F.-C. Li, J.-C. Yang, H. Kinoshita, M. Oishi, and M. Oshima. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 69, (2012), pp. 340–351. https://doi.org/10.1016/j.ces.2011.10.048.

[26] B. R. Munson, D. F. Young, and T. H. Okiishi. Fundamentals of fluid mechanics. Oceanographic Literature Review, 10, (42), (1995).

F4

Downloads

Published

09-08-2025

How to Cite

Hoang, V. T., Nguyen, T. T., & Pham, H. V. (2025). Geometric influence of entry angle and contraction ratio on droplet regime transition from trap to squeeze in microchannel. Vietnam Journal of Mechanics. https://doi.org/10.15625/0866-7136/20921

Most read articles by the same author(s)

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.