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Abstract. In this paper, we investigate the propagation of Stoneley waves along the un-
bonded interface between two micropolar elastic half-spaces. Using the complex function
method, we derive explicit formulas for the wave velocity. These formulas have applica-
tions in various scientific fields, particularly in non-destructive evaluation. Two numerical
examples illustrate how the obtained wave velocity formulas can be used to evaluate ma-
terial parameters non-destructively.
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1. INTRODUCTION

The propagation of Stoneley waves along the welded interface between two dissimi-
lar isotropic elastic half-spaces, with wave amplitudes decaying away from the interface,
was first investigated by Stoneley [1] in 1924. Initially, applications of Stoneley waves
were mainly found in seismology; however, they have increasingly attracted the atten-
tion of researchers due to their significant potential in various scientific and engineering
fields. Phan et al. [2] employed the reciprocity theorem to derive closed-form expres-
sions for the Stoneley wave amplitudes and the scattering caused by interfacial delami-
nation. Gu et al. [3] investigated the influence of nematic elastic material parameters on
the Stoneley wave velocity, contributing to the design of smart interfaces.
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Nowadays, new materials are frequently created in laboratories, and estimating their
material parameters is extremely important. Surface waves in general and Stoneley
waves in particular are useful tools for this task because their signals are easily detected
and their velocities are easily measured. The inverse problem in nondestructive eval-
uation is formulated based on measured wave velocity values and the corresponding
secular equation. Solving the inverse problem is fitting the experimental secular curve
to the theoretical one in order to determine the material parameters. However, if explicit
formulas for the wave velocity and slowness are available, the problem reduces to solv-
ing algebraic equations. This approach is significantly simpler than performing curve
fitting between experimental and theoretical secular curves.

So far, a lot of formulas for the velocity of Rayleigh waves in different elastic ma-
terials have been derived (see [4–11]). However, only a few formulas for the velocity of
Stoneley waves have been found due to the complexity of their secular equation. In par-
ticular, the velocity formulas for Stoneley waves propagating along the loosely bonded
interface of two elastic half-spaces were presented by Vinh and Giang [12], and those
for propagation along the bonded interface of two elastic half-spaces with identical bulk
wave velocities were provided by Vinh et al. [13].

In recent years, internal structures or microstructured materials have become in-
creasingly common in practical applications, such as porous materials [14], reinforced
soils [15], and granular materials [16]. Bones (of both human and animals) are also con-
sidered natural structural materials and are modeled as micropolar elastic media in [17].
The classical elasticity theory is insufficient to describe the micro-behavior of these ma-
terials. To address this, Eringen [18, 19] proposed the theory of micropolar elasticity and
microstretch elasticity. Using the microstretch theory, Tomar and Dilbag Singh [20] inves-
tigated Stoneley waves and derived the secular equation for the wave. Using micropolar
theory, Eringen [19] studied the propagation of Rayleigh waves in an isotropic microp-
olar elastic medium and derived the secular equation in explicit form. Tajuddin [21]
derived the secular equation for Stoneley waves propagating along the unbonded in-
terface between two isotropic micropolar elastic half-spaces and proved the existence of
Stoneley waves in two special cases: when the half-spaces are either incompressible or
Poisson materials with closely related properties. Since the corresponding material pa-
rameters of the two half-spaces are very close, Tajuddin supposed the Stoneley wave
velocity as a perturbation of the Rayleigh wave velocity and applied an asymptotic ex-
pansion method to derive the Stoneley wave velocity formula. As a result, the velocity
formulas presented in that work are approximate. In contrast, the study by Giang and
Vinh [22] investigates Stoneley wave propagation along the interface between two gener-
ally isotropic micropolar elastic half-spaces, without imposing any specific assumptions
on the material parameter values. In their work, the authors provided the necessary and
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sufficient conditions for the existence of Stoneley waves, along with explicit formulas for
Stoneley wave slowness.

In the formulation and solution of inverse problems, the more independent equa-
tions that can be established, the more material parameters can be determined. Explicit
velocity formulas are particularly valuable in inverse problems, as they provide indepen-
dent equations.

In this paper, the velocity formulas for Stoneley waves propagating along the un-
bonded interface between two isotropic micropolar elastic half-spaces are derived using
the complex function method [23, 24]. It should be noted that the velocity formulas de-
rived in this paper are completely independent of the slowness formulas derived by Gi-
ang and Vinh [22]. Two numerical examples (Subsections 4.1 and 4.2) are presented to
illustrate the use of the wave velocity formula in solving inverse problems. In these ex-
amples, it is assumed that only one material parameter is unknown, while the others have
been determined by other methods. An algebraic equation is then formulated based on
the wave velocity formula and the measured wave velocity. Solving this equation yields
the value of the unknown material parameter. However, when the velocity and slowness
formulas are combined, two independent algebraic equations can be established from a
single velocity measurement, allowing the simultaneous determination of two material
parameters (see the example presented in Subsection 4.3). Therefore, the velocity formu-
las derived in this paper, together with the slowness formulas in [22], are useful tools for
solving inverse problems.

2. SECULAR EQUATION

Consider a Stoneley wave propagating along the interface between two micropolar
elastic half-spaces, denoted by Ω (x3 ≤ 0) and Ω∗ (x3 ≥ 0). Assume that the interface at
x3 = 0 is unbonded, meaning that the normal displacement, the normal stress, the couple
stress, and the microrotation are continuous, while the shear stress components vanish
across the interface [21]. The wave propagates in the x1 direction with velocity c. The
secular equation for the Stoneley wave was first introduced by Tajuddin [21], although
the derivation was not provided in detail. In a more recent study, Giang and Vinh [22]
presented the rigorous and detailed derivation of the secular equation, which is given as
follows

ρ∗c∗T
4√

1 − c2(c∗L
2 + ε∗c∗T

2)−1
R∗(c) +

ρc4
T√

1 − c2(c2
L + εc2

T)
−1

R(c) = 0, (1)

in which

R(c) = (2 + ε − c2

cT2 )
2 − (2 + ε)2

√
1 − c2

cL2 + εcT2

√
(1 − c2

(1 + ε)cT2)
, (2)
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R∗(c) = (2 + ε∗ − c2

c∗T
2 )

2 − (2 + ε∗)2

√
1 − c2

c∗L
2 + ε∗c∗T

2

√
(1 − c2

(1 + ε∗)c∗T
2 . (3)

In the above equation, cT =

√
µ

ρ
, cL =

√
λ + 2µ

ρ
are the speeds of transverse and

longitudinal waves, respectively; ρ is the mass density; and λ, µ are Lamé constants.

ε =
κ

µ
where κ is the micropolar constant of the half-space Ω. The same quantities related

to Ω∗ have the same symbol but are systematically distinguished by an asterisk.

Multiplying both sides of (3) by
√

1 − c2(c2
L + εc2

T)
−1, we have

ρ∗c∗T
4

√
1 − c2(c2

L + εc2
T)

−1√
1 − c2(c∗L

2 + ε∗c∗T
2)−1

{(
2 + ε∗ − c2c∗T

−2)2

− (2 + ε∗)2
√

1 − c2(c∗L
2 + ε∗c∗T

2)−1
√
(1 − c2(1 + ε∗)−1c∗T

−2)
}

+ ρc4
T

{
(2 + ε − c2cT

−2)2 − (2 + ε)2
√

1 − c2(cL2 + εcT2)−1
√

1 − c2(1 + ε)−1cT−2
}
= 0.

(4)

We introduce the following notations

x =
c2

(1 + ε)c2
T

, a =
c2

T

c∗T
2 , b =

(1 + ε)c2
T

c∗L
2 + ε∗c∗T

2 , (5)

d =
(1 + ε)c2

T

(1 + ε∗)c∗T
2 , e =

(1 + ε)c2
T

cL2 + εcT2 , f =
ρ

ρ∗
. (6)

In terms of these notations, the secular equation is rewritten as

f (x) :=
√

1 − ex√
1 − bx

{[
2 + ε∗ − x(1 + ε)a

]2 − (2 + ε∗)2
√

1 − bx
√

1 − dx
}

+ f a2
{[

2 + ε − x(1 + ε)
]2 − (2 + ε)2

√
1 − ex

√
1 − x

}
= 0.

(7)

Without loss of generality, we can suppose that (1 + ε)c2
T ≤ (1 + ε∗)c∗T

2. With this
assumption, we have (see [22]):

Remark 1. The necessary and sufficient condition for a Stoneley wave to exist is that Eq. (7) has
a root in the interval (0, 1).

In addition, from the fact cT < cL, c∗T < c∗L, it is easy to see that b, e < 1, b < d, d ≤ 1.
Therefore, there are three basic possibilities (see [22]):

Case 1: b < d < e < 1.
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Case 2: b < e < d < 1.

Case 3: e < b < d < 1.

and some special cases

Case 1.1: b < d = e < 1.

Case 2.1: b = e < d < 1.

Case 2.2: b < e < d = 1.

Case 2.3: b = e < d = 1.

Case 3.1: e < b < d = 1.

In the complex plane C, we consider the equation:

F(z) =
√

e
√

z − 1/e√
b
√

z − 1/b

(
(2 + ε∗ − z(1 + ε∗)a)2 + (2 + ε∗)2

√
bd
√

z − 1/b
√

z − 1/d
)

+ f a2
(
(2 + ε − z(1 + ε))2 + (2 + ε)2√e

√
z − 1/e

√
z − 1

)
= 0,

(8)

where
√

z − 1/e,
√

z − 1/b,
√

z − 1/d,
√

z − 1 are chosen as the principal branches of the corre-
sponding square roots. Eq. (8) coincides with Eq. (7) for real values of z belonging to (0, 1).

Remark 2. z0 = 0 is a root of Eq. (8).

3. FORMULAS FOR THE VELOCITY

In this section, we will find a root of Eq. (7) corresponding to the Stoneley wave ve-
locity by employing the complex function method [10–13]. The complex function method
is a powerful mathematical tool that was first used by Nkemzi [4] to derive the Rayleigh
wave velocity formula in an isotropic elastic half-space. Later, this method was suc-
cessfully employed by Vinh, Giang, and their collaborators to solve the secular equa-
tions of Rayleigh and Stoneley waves to derive the wave velocity formulas for these
waves [12, 13]. When the elastic medium is anisotropic, the secular equations become
more complicated, harder to solve, and, in many cases, remain open. So far, the complex
function method can be used not only to derive explicit formulas for surface wave ve-
locities, but also to establish necessary and sufficient conditions for the existence of such
waves [10, 11, 22, 25].

3.1. Case 1: 0 < b < d < e < 1

Denote L = L1 ∪ L2 ∪ L3 with L1 = [1, 1/e], L2 = [1/e, 1/d], L3 = [1/d, 1/b], S = {z ∈
C, z /∈ L}, N(z0) = {z ∈ S : 0 < |z − z0| < δ}, where δ is a sufficiently small positive
number and z0 is some point in the complex plane C. If a function ϕ(z) is holomorphic in
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Ω ⊂ C, we write ϕ(z) ∈ H(Ω). From Eq. (8), it is not difficult to show that the function
F(z) has the following properties:

- ( f1) F(z) ∈ H(S).

- ( f2) F(z) is bounded in N(1).

- ( f3) F(z) = O
(

z − 1
b

)1/2

as |z| → 1
b

.

- ( f4) F(z) = O(z2) as |z| → ∞.

- ( f5) F(z) is continuous on L from the left and from the right (see [23]), with the
boundary values F+(t) (the right boundary value of F(z)) and F−(t) (the left boundary
value of F(z)) defined as follows

F±
k (t) = Rk(t)± iIk(t), t ∈ Lk, k = 1 : 3, (9)

where

R1(t) =
√

e
√

1/e − t√
b
√

1/b − t

(
(2 + ε∗ − t(1 + ε)a)2 − (2 + ε∗)2

√
bd
√

1/b − t
√

1/d − t
)

+ f a2(2 + ε − t(1 + ε)2,
(10)

I1(t) = f a2(2 + ε)2√e
√

1/e − t
√

t − 1), (11)

R2(t) = f a2
(
(2 + ε − t(1 + ε))2 + (2 + ε)2√e

√
t − 1/e

√
t − 1

)
, (12)

I2(t) =
√

e
√

t − 1/e(2 + ε∗)2
√

d
√

1/d − t −
√

e
√

t − 1/e√
b
√

1/b − t
(2 + ε∗ − t(1 + ε)a)2, (13)

R3(t) = f a2((2 + ε − t(1 + ε))2 + (2 + ε)2√e
√

t − 1/e
√

t − 1)

+ (2 + ε∗)2
√

ed
√

t − 1/e
√

t − 1/d,
(14)

I3(t) = −
√

e
√

t − 1/e√
b
√

1/b − t
(2 + ε∗ − t(1 + ε)a)2. (15)

Now, we introduce the function

g(t) =
F+(t)
F−(t)

, t ∈ L. (16)

Since F+(t) and F−(t) are conjugate to each other on L, we can easily deduce that

log g(t) = iϕ(t), (17)

in which

ϕ(t) = Arg g(t) = 2Arg F+(t), t ∈ L. (18)
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Note that if F+(t) vanishes or goes to ∞ at some t ∈ L, g(t) is understood as

g(t) = lim
τ→t

F+
k (τ)

F−
k (τ)

. (19)

Using Eqs. (10)–(15), it is not difficult to show that

g(1) =


1, if R1(1) > 0
eiπ, if R1(1) = 0
ei2π, if R1(1) < 0

g(1/b) = e−iπ. (20)

From (16), it is clear that

F+(t) = g(t)F−(t), t ∈ L. (21)

Consider the function Γ(z) defined by

Γ(z) =
1

2πi

∫
L

log g(t)
t − z

dt. (22)

It is not difficult to verify that

(γ1) Γ(z) ∈ H(S),

(γ2) Γ(∞) = 0,

(γ3) Γ(z) =


Ω0(z), if R1(1) > 0
1
2

log
1

z − 1
+ Ω1(z), if R1(1) = 0

log
1

z − 1
+ Ω2(z), if R1(1) < 0

z ∈ N(1)

where Ω0(z), Ω1(z), Ω2(z) are bounded in N(1) and take a defined value at z = 1.

(γ4) Γ(z) =
1
2

log
1

z − 1/b
+ Ω3(z) for z ∈ N(1/b), where Ω3(z) is bounded in N(1/b)

and takes a defined value at z = 1/b.

Introduce the function Φ(z) given by

Φ(z) = exp Γ(z). (23)



282 Pham Thi Ha Giang, Ngo Van Trung, Pham Chi Vinh

It is implied from (γ1)− (γ4) that

(ϕ1)Φ(z) ∈ H(S),

(ϕ2)Φ(z) ̸= 0, ∀z ∈ S,

(ϕ3)Φ(z) =


eΩ0(z), if R1(1) > 0
(z − 1)−1/2eΩ1(z), if R1(1) = 0
(z − 1)eΩ2(z), if R1(1) < 0

z ∈ N(1)

(ϕ4)Φ(z) =
(

z − 1
b

)−1/2

eΩ3(z) for z ∈ N
(

1
b

)
.

From the Plemelj formula [23], the function Φ(z) is seen directly to satisfy the bound-
ary condition

Φ+(t) = g(t)Φ−(t), t ∈ L. (24)

We now consider the function Y(z) defined by

Y(z) = F(z)/Φ(z). (25)

From ( f1)− ( f5), (16), (ϕ1)− (ϕ4) and (24), it follows that

(y1)Y(z) ∈ H(S),

(y2)Y(z) = O(z2) as |z| → ∞,

(y3)Y(z) =


e−Ω0(z)F(z), in the case R1(1) > 0
(z − 1)1/2e−Ω1(z)F(z), in the case R1(1) = 0
(z − 1)e−Ω2(z)F(z), in the case R1(1) < 0

z ∈ N(1)

(y4)Y(z) = e−Ω3(z)(z − 1/b)1/2F(z) = O(1) for z ∈ N(1/b),

(y5)Y+(t) = Y−(t), t ∈ L.

Properties (y1) and (y5) of the function Y(z) show that Y(z) is holomorphic in the
entire complex plane C with the possible exception of the points z = 1 and z = 1/b. By
(y3) and (y4), these points are removable singular points, and it may be assumed that
the function Y(z) is holomorphic in the entire complex plane C (see [24]). Thus, by the
generalised Liouville theorem [24] and taking into account (y2), Y(z) is a second-order
polynomial

Y(z) := P(z) = A2z2 + A1z + A0, (26)

where A2, A1, A0 are constants.

From (25) and (26), we have

F(z) = Φ(z)P(z). (27)

Since Φ(z) ̸= 0, ∀z ∈ S. Therefore, we have the following proposition:
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Proposition 1.
F(z) = 0 ↔ P(z) = 0, ∀z ∈ S. (28)

From Remark 2 and this proposition, we deduce that P(z) has a root z0 = 0. The
remaining root, denoted by xs, corresponds to the Stoneley wave velocity, if the Stoneley
wave exists. Readers may refer to Ref. [22] for more details on the existence conditions
and the uniqueness of the Stoneley wave.

To find xs, we first need to determine the coefficients of P(z). From (23) and (27) we
have

P(z) = F(z)e−Γ(z). (29)

From (23) and (18), it follows (see also [4])

−Γ(z) =
∞

∑
n=0

In

zn+1 , (30)

in which

In =
1

2π

∫
L

tnϕ(t)dt, n = 0, 1, 2, 3, . . . (31)

Using (30), we can express e−Γ(z) as follows

e−Γ(z) = 1 +
a1

z
+

a2

z2 + O(z−3), (32)

where a1, a2, a3 are constants to be determined. Employing the identity(
e−Γ(z)

)′
= (−Γ(z))′ e−Γ(z), (33)

and substituting (30) and (32) into (33) yields

a1 = I0, a2 =
I2
0
2
+ I1. (34)

By expanding F(z) into a Laurent series at infinity, it is not difficult to verify that

F(z) = B2z2 + B1z + B0 + O(z−1), (35)

where

B2 =
√

e/b(a2 + 2a2ε∗ + a2ε∗2) + a2(1 + 2ε + ε2) f , (36)

B1 =
√

e/b
(
− 4a − 6aε∗ − 2aε2 +

√
bd(2 + ε∗)2

+ (1/2b − 1/2e)(a2 + 2a2ε∗ + a2ε∗2)
)
+ a2 f (−4 − 6ε − 2ε2 +

√
e(2 + ε)2).

(37)

Substituting (32) and (35) into (29) yields

P(z) = B2z2 + (B2a1 + B1)z + (B2a2 + B1a1 + B0). (38)
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From Remark 2 and (28), we have

P(0) = 0. (39)

Using (34), (37), (38), and Vieta’s theorem, it is easy to see that the second root of the
equation P(z) = 0, denoted by xs is

xs = −B1/B2 − I0. (40)

Theorem 3.1. In the case b < d < e < 1, if the Stoneley wave exists, the formula for the velocity
is

xs = −B1/B2 − I0, (41)
where B2, B1 are represented by (36) and (37) and I0 is calculated as follows

I0 =
1
π

3

∑
k=1

∫
Lk

Arg F+
k (t)dt, (42)

in which F+
k (t) = Rk + iIk and Rk, Ik, k = 1, 3 are given by: (9)–(15).

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

e

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

x
s

a=0.4

a=0.42

a=0.44

Eq. Secular

Fig. 1. The dependence of the Stoneley wave velocity on the parameter e for case 1
with b = 0.3, f = 3, ε = 0.003, ε∗ = 0.005

In Fig. 1, the solid, dash-dot, and dashed curves represent the dependence of the
dimensionless velocity xs on e for the cases a = 0.4, a = 0.42, a = 0.44, respectively,
computed using formula (41). The diamond curve shows the velocity values obtained
by numerically solving the secular equation (7). It can be found from the figure that the
results obtained from formula (41) coincide with those from the numerical solution of the
secular equation, thereby confirming the validity of the derived formula.
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3.2. Case 2: 0 < b < e < d < 1

In this section, L = L1 ∪ L2 ∪ L3 with L1 = [1, 1/d], L2 = [1/d, 1/e], L3 = [1/e, 1/b],
S = {z ∈ C, z /∈ L}. With the same procedure in the previous section, we have the
following theorem:

Theorem 3.2. In the case 0 < b < e < d < 1, if the Stoneley wave exists, the formula for the
velocity is:

xs = −B1/B2 − I0, (43)
where B1, B2 are represented by (36) and (37), and I0 is calculated as follows

I0 =
1
π

3

∑
k=1

∫
Lk

Arg F+
k (t)dt, (44)

in which F+
k (t) = Rk + iIk and Rk, Ik, k = 1, 3 are given by (10), (11), (14), (15) and R2(t), I2(t)

are given by

R2 =

√
e
√

1/e − t√
b
√

1/b − t

(
2 + ε∗ − t(1 + ε∗)a

)2
+ f a2(2 + ε − t(1 + ε)

)2, (45)

I2 =
√

e(2 + ε∗)2
√

d

√
1
e
− t

√
t − 1

d
+ f a2((2 + ε)2√e

√
1
e
− t

√
t − 1. (46)

0.3 0.35 0.4 0.45 0.5 0.55 0.6

b

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

x
s

a=0.8

a=0.83

a=0.86

Eq. Secular

Fig. 2. The dependence of the Stoneley wave velocity on the parameter b for case 2
with e = 0, f = 2, ε = 0.005, ε∗ = 0.004

In Fig. 2, the solid, dash-dot, and dashed curves represent the dependence of the
dimensionless velocity xs on b for the cases a = 0.8, a = 0.83, a = 0.86, respectively,
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computed using formula (43). The diamond curve shows the velocity values obtained
by numerically solving the secular equation (7). It can be found from the figure that the
results obtained from formula (43) coincide with those from the numerical solution of the
secular equation, thereby confirming the validity of the derived formula.

3.3. Case 3: 0 < e < b < d < 1

In this case, since 1/e (instead of 1/b) is the right endpoint of L, we use the equation

F̂(z) =
√

e
b

(
(2 + ε∗ − z(1 + ε∗)a)2 + (2 + ε∗)2

√
bd
√

z − 1/b
√

z − 1/d
)

+ f a2
√

z − 1/b√
z − 1/e

(
(2 + ε − z(1 + ε))2 + (2 + ε)2√e

√
z − 1/e

√
z − 1

)
= 0.

(47)

Denote L = L1 ∪ L2 ∪ L3 with L1 = [1, 1/d], L2 = [1/d, 1/b], L3 = [1/b, 1/e], S =

{z ∈ C, z /∈ L}. It is not difficult to show that the function F̂(z) has following the proper-
ties:

- ( f̂1) F̂(z) ∈ H(S).

- ( f̂2) F̂(z) is bounded in N(1).

- ( f̂3) F̂(z) = O
(

z − 1
e

)1/2

as |z| → 1
e

.

- ( f̂4) F̂(z) = O(z2) as |z| → ∞.

- ( f̂5) F̂(z) is continuous on L from the left and from the right (see [23]) with the
boundary values F̂+(t) (the right boundary value of F̂(z)) and F̂−(t) (the left boundary
value of F̂(z)) defined as follows

F̂±
k (t) = R̂k(t)± i Îk(t), t ∈ Lk, k = 1 : 3, (48)

where

R̂1(t) =
√

e
b
(
(2 + ε∗ − t(1 + ε∗)a)2 − (2 + ε∗)2

√
bd
√

1/b − t
√

1/d − t
)

+ f a2
√

1/b − t√
1/e − t

(
2 + ε − t(1 + ε)

)2
,

(49)

Î1(t) = f a2(2 + ε)2√e
√

1/b − t
√

t − 1, (50)

R̂2(t) =
√

e
b
(2 + ε∗ − t(1 + ε∗)a)2 + f a2

√
1/b − t√
1/e − t

(
(2 + ε − t(1 + ε)

)2
, (51)

Î2(t) =
√

ed(2 + ε∗)2
√

1/b − t
√

t − 1/d + f a2(2 + ε)2√e
√

1/b − t
√

t − 1, (52)
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R̂3(t) =
√

e
b
(2 + ε∗ − t(1 + ε∗)a)2 + f a2(2 + ε)2√e

√
t − 1/b

√
t − 1

+
√

ed
√

t − 1/b
√

t − 1/d(2 + ε∗)2,
(53)

Î3(t) = − f a2
√

t − 1/b√
1/e − t

(
2 + ε − t(1 + ε)

)2
, (54)

ĝ(t) =
F̂+(t)
F̂−(t)

, t ∈ L. (55)

Using Eqs. (49)–(54), it is not difficult to show that

ĝ(1) =


1, if R̂1(1) > 0
eiπ, if R̂1(1) = 0
ei2π, if R̂1(1) < 0

ĝ(1/e) = e−iπ. (56)

Therefore, following the same procedure as in Case 1, we have the following theo-
rem:

Theorem 3.3. In the case 0 < e < b < d < 1, if the Stoneley wave exists, the formula for the
velocity is

xs = −B̂1/B̂2 − I0, (57)
where B̂1, B̂2 are represented as follow

B̂2 =
√

e/b(a2 + 2a2ε∗ + a2ε∗2) + f a2(1 + 2ε + ε2), (58)

B̂1 =
√

e/b
(
− 4a − 6aε∗ − 2aε∗2 +

√
bd(2 + ε∗)2)

+ f a2(− 4 − 6ε − 2ε∗2 +
√

e(2 + ε)2 + (−1/2b + 1/2e)(1 + 2ε∗ + ε∗2)
)
,

(59)

and Î0 is calculated as follows

Î0 =
1
π

3

∑
k=1

∫
Lk

Arg F̂+
k (t)dt. (60)

In Fig. 3, the solid, dash-dot, and dashed curves represent the dependence of the
dimensionless velocity xs on a for the cases e = 0.4, e = 0.42, e = 0.44, respectively,
computed using formula (57). The diamond curve shows the velocity values obtained
by numerically solving the secular equation (7). It can be found from the figure that the
results obtained from formula (57) coincide with those from the numerical solution of the
secular equation, thereby confirming the validity of the derived formula.

Remark 3. The velocity formulas for Stoneley waves in special cases can be easily obtained from
those for the three main cases.

Remark 4. The results in this paper recover those in the paper [12] for the case when two half-
spaces are purely elastic by taking ε = ε∗ = 0.
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Fig. 3. The dependence of the Stoneley wave velocity on the parameter a for case 3
with b = 0.5, f = 2, ε = 0.005, ε∗ = 0.004

4. EVALUATION OF MECHANICAL PROPERTIES OF TWO HALF-SPACES BY
USING FORMULAS OF STONELEY WAVE VELOCITY

As emphasized in Giang’s thesis [26], the velocity formulas for surface waves, in-
cluding Stoneley waves, are extremely convenient tools for non-destructively evaluating
the mechanical characteristics of structures before and during loading. In this section,
two examples are presented to illustrate the application of the Stoneley wave velocity
formula in evaluating material parameters.

4.1. Evaluation of c∗T

In this subsection, we assume that the material parameters, except for c∗T, have been
measured. The input data consists of cT =

√
2 m/s, cL =

√
6 m/s, c∗L =

√
8 m/s, f =

2, ε = 0.04, ε∗ = 0.06, along with the measured dimensionless Stoneley wave velocity
xm. The output is the transverse wave velocity c∗T of the half-space Ω∗. Due to the lack
of actual measured results, the input velocity data is synthetic, created from the correct
wave velocity values (41) for the case c∗T =

√
7 m/s with a noise level of 1%. To derive

the solution to the problem, the author developed a program to solve the equation

xs(c∗T) = xm, (61)

using the bisection method in Matlab R2017b.
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In Eq. (61), xs(c∗T) is a function of c∗T constructed in Matlab using the obtained
formula for the Stoneley wave velocity (41) and the input data cT =

√
2 m/s, cL =√

6 m/s, c∗L =
√

8 m/s, f = 2, ε = 0.04 and ε∗ = 0.06. The obtained result is c∗T =

2.673 m/s with a relative error of 1%.

4.2. Evaluation of c∗L

In this subsection, we assume that the material parameters, except for c∗L, have been
measured. The input data consists of cT =

√
2 m/s, cL =

√
5 m/s, c∗T = 2 m/s, f = 2, ε =

0.03, and ε∗ = 0.05 along with xm, which is generated from the correct wave velocity
value calculated using formula (43) for the case c∗L =

√
6.5 m/s with a noise level of

0.5%.

The function xs(c∗L) is constructed in Matlab as a function of c∗L using the formula for
the Stoneley wave velocity (43) with the input data cT =

√
2 m/s, cL =

√
5 m/s, c∗T =

2 m/s, f = 2, ε = 0.03 and ε∗ = 0.05. Solving the equation

xs(c∗L) = xm, (62)

yields the result c∗L = 2.518 m/s with a relative error of 1.2%.

4.3. Simultaneous evaluation of c∗L and c∗T

In this subsection, we assume that the material parameters, except for c∗L and c∗T, have
been measured. The input data consists of cT =

√
3 m/s, cL =

√
6 m/s, f = 2, ε = 0.002,

and ε∗ = 0.004 along with xm, which is generated from the correct wave velocity value
calculated using the formula (43) for the case c∗L =

√
6.2 m/s, c∗T =

√
4.5 m/s, with a

noise level of 0.5%.

The functions xs(c∗L, c∗T) and ys(c∗L, c∗T) are constructed in Matlab using the formulas
for the Stoneley wave velocity (43) and slowness (Eq. (76) in [22]), respectively, with the
input data cT =

√
3 m/s, cL =

√
6 m/s, f = 2, ε = 0.002, and ε∗ = 0.004. Solving the

equations

xs(c∗L, c∗T) = xm, (63)

ys(c∗L, c∗T) =
1

xm
, (64)

yields the results c∗T = 2.1395 m/s, c∗L = 2.48998 m/s with a relative errors of 0.855% and
1.4 × 10−4%, respectively.

5. CONCLUSION

In this paper, formulas for the velocity of Stoneley waves propagating along the un-
bonded interface between two micropolar isotropic elastic half-spaces have been derived
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using the complex function method. The two numerical examples presented demon-
strate that the derived wave velocity formulas are convenient tools for non-destructive
evaluation.

ACKNOWLEDGMENT

The work was supported by the Vietnam National Foundation For Science and Tech-
nology Development (NAFOSTED) under grant number 107.02-2021.13.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or per-
sonal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

[1] R. Stoneley. Elastic waves at the surface of separation of two solids. Proceedings of the Royal So-
ciety of London. Series A, Containing Papers of a Mathematical and Physical Character, 106, (1924),
pp. 416–428. https://doi.org/10.1098/rspa.1924.0079.

[2] H. Phan, T. Q. Bui, H. T.-L. Nguyen, and C. V. Pham. Computation of inter-
face wave motions by reciprocity considerations. Wave Motion, 79, (2018), pp. 10–22.
https://doi.org/10.1016/j.wavemoti.2018.02.008.

[3] Q. Gu, Y. Liu, and T. Liang. Stoneley wave at the interface of elastic-nematic elastomer half
spaces. Physica B: Condensed Matter, 652, (2023). https://doi.org/10.1016/j.physb.2022.414629.

[4] D. Nkemzi. A new formula for the velocity of Rayleigh waves. Wave Motion, 26, (1997),
pp. 199–205. https://doi.org/10.1016/s0165-2125(97)00004-8.

[5] P. G. Malischewsky. Comment to “A new formula for the velocity of Rayleigh waves”
by D. Nkemzi [Wave Motion 26 (1997) 199–205]. Wave Motion, 31, (2000), pp. 93–96.
https://doi.org/10.1016/s0165-2125(99)00025-6.

[6] P. C. Vinh and R. W. Ogden. On formulas for the Rayleigh wave speed. Wave Motion, 39,
(2004), pp. 191–197. https://doi.org/10.1016/j.wavemoti.2003.08.004.

[7] P. C. Vinh and R. W. Ogden. Formulas for the Rayleigh wave speed in orthotropic elastic
solids. Archive of Mechanics, 56, (2004), pp. 247–265.

[8] P. C. Vinh. On formulas for the velocity of Rayleigh waves in prestrained incompressible elas-
tic solids. Journal of Applied Mechanics, 77, (2010), pp. 1–9. https://doi.org/10.1115/1.3197139.

[9] P. C. Vinh. On formulas for the Rayleigh wave velocity in pre-stressed compressible solids.
Wave Motion, 48, (2011), pp. 614–625. https://doi.org/10.1016/j.wavemoti.2011.04.015.

[10] P. C. Vinh and N. Q. Xuan. Rayleigh waves with impedance boundary condition: Formula
for the velocity, existence and uniqueness. European Journal of Mechanics - A/Solids, 61, (2017),
pp. 180–185. https://doi.org/10.1016/j.euromechsol.2016.09.011.

[11] P. T. H. Giang and P. C. Vinh. On the existence of Rayleigh waves with full impedance
boundary condition. Mathematics and Mechanics of Solids, 30, (2024), pp. 927–941.
https://doi.org/10.1177/10812865241266809.

https://doi.org/10.1098/rspa.1924.0079
https://doi.org/10.1016/j.wavemoti.2018.02.008
https://doi.org/10.1016/j.physb.2022.414629
https://doi.org/10.1016/s0165-2125(97)00004-8
https://doi.org/10.1016/s0165-2125(99)00025-6
https://doi.org/10.1016/j.wavemoti.2003.08.004
https://doi.org/10.1115/1.3197139
https://doi.org/10.1016/j.wavemoti.2011.04.015
https://doi.org/10.1016/j.euromechsol.2016.09.011
https://doi.org/10.1177/10812865241266809


Formulas for the velocity of Stoneley waves at the unbonded interface between two micropolar elastic half-spaces 291

[12] P. C. Vinh and P. T. H. Giang. On formulas for the velocity of Stoneley waves propagat-
ing along the loosely bonded interface of two elastic half-spaces. Wave Motion, 48, (2011),
pp. 647–657. https://doi.org/10.1016/j.wavemoti.2011.05.002.

[13] P. C. Vinh, P. G. Malischewsky, and P. T. H. Giang. Formulas for the speed and
slowness of Stoneley waves in bonded isotropic elastic half-spaces with the same
bulk wave velocities. International Journal of Engineering Science, 60, (2012), pp. 53–58.
https://doi.org/10.1016/j.ijengsci.2012.05.002.

[14] R. S. Lakes. Experimental microelasticity of two porous solids. International Journal of Solids
and Structures, 22, (1), (1986), pp. 55–63. https://doi.org/10.1016/0020-7683(86)90103-4.

[15] G. Hassen and P. de Buhan. A two-phase model and related numerical tool for the design of
soil structures reinforced by stiff linear inclusions. European Journal of Mechanics A/Solids, 24,
(2005), pp. 987–1001. https://doi.org/10.1016/j.euromechsol.2005.06.009.

[16] N. P. Kruyt. On weak and strong contact force networks in granular mate-
rials. International Journal of Solids and Structures, 92–93, (2016), pp. 135–140.
https://doi.org/10.1016/j.ijsolstr.2016.02.039.

[17] J. F. C. Yang and R. S. Lakes. Experimental study of micropolar and couple stress
elasticity in compact bone in bending. Journal of Biomechanics, 15, (1982), pp. 91–98.
https://doi.org/10.1016/0021-9290(82)90040-9.

[18] A. C. Eringen. Linear theory of micropolar elasticity. Journal of Mathematics and Mechanics, 15,
(6), (1966), pp. 909–923.

[19] C. Eringen. Theory of microcontinuum field theories. Springer, (1999).
[20] S. K. Tomar and D. Singh. Propagation of Stoneley waves at an interface between two

microstretch elastic half-spaces. Journal of Vibration and Control, 12, (2006), pp. 995–1009.
https://doi.org/10.1177/1077546306068689.

[21] M. Tajuddin. Existence of Stoneley waves at an unbonded interface between two
micropolar elastic half-spaces. Journal of Applied Mechanics, 62, (1995), pp. 255–257.
https://doi.org/10.1115/1.2895919.

[22] P. T. H. Giang and P. C. Vinh. Existence and uniqueness of micropolar elastic Stoneley waves
with sliding contact and formulas for the wave slowness. Journal of Applied Mechanics, 92,
(2025). https://doi.org/10.1115/1.4066956.

[23] N. I. Muskhelishvili. Singular integral equations. Noordhoff-Groningen, (1953).
https://doi.org/10.1007/978-94-009-9994-7.

[24] N. I. Muskhelishvili. Some basic problems of mathematical theory of elasticity. Noordhoff, Nether-
lands, (1963). https://doi.org/10.1007/978-94-017-3034-1.

[25] P. T. H. Giang and P. C. Vinh. Existence and uniqueness of Rayleigh waves with normal
impedance boundary conditions and formula for the wave velocity. Journal of Engineering
Mathematics, 130, (2021). https://doi.org/10.1007/s10665-021-10170-y.

[26] P. T. H. Giang. The velocity formulas of Rayleigh waves and Stoneley waves. Phd thesis, VNU
University of Science, (2017).

https://doi.org/10.1016/j.wavemoti.2011.05.002
https://doi.org/10.1016/j.ijengsci.2012.05.002
https://doi.org/10.1016/0020-7683(86)90103-4
https://doi.org/10.1016/j.euromechsol.2005.06.009
https://doi.org/10.1016/j.ijsolstr.2016.02.039
https://doi.org/10.1016/0021-9290(82)90040-9
https://doi.org/10.1177/1077546306068689
https://doi.org/10.1115/1.2895919
https://doi.org/10.1115/1.4066956
https://doi.org/10.1007/978-94-009-9994-7
https://doi.org/10.1007/978-94-017-3034-1
https://doi.org/10.1007/s10665-021-10170-y

	1. INTRODUCTION
	2. SECULAR EQUATION
	3. FORMULAS FOR THE VELOCITY
	3.1. Case 1: 0<b<d< e<1
	3.2. Case 2: 0<b<e<d<1
	3.3. Case 3: 0<e<b<d<1

	4. EVALUATION OF MECHANICAL PROPERTIES OF TWO HALF-SPACES BY USING FORMULAS OF STONELEY WAVE VELOCITY
	4.1. Evaluation of cT*
	4.2. Evaluation of cL*
	4.3. Simultaneous evaluation of cL* and cT*

	5. CONCLUSION
	ACKNOWLEDGMENT
	DECLARATION OF COMPETING INTEREST
	REFERENCES

