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Abstract. This paper presents prediction of forming limits of Advanced High-Strength
Steels (AHSS) DP980 by adopting an enhanced ductile damage model to consider sheet
metal anisotropy. The micro-void growth-based original damage model is transformed
from principal stress space (σ1, σ2, σ3) into the equivalent stress, Lode parameter, and
stress triaxiality space (σe, Lp, η). The proposed ductile fracture prediction model is then
implemented and integrated with a finite element (FE) software package to conduct the
deep drawing numerical simulations. The Nakajima-type specimens are adopted to pre-
dict the limiting principal plastic strains ranging from uniaxial tensile through plane-strain
to biaxial tensile loading states. The forming limit diagram (FLD) of DP980 steel is estab-
lished in accordance with the ISO 12004-2-2008 standard.

Keywords: ductile fracture, forming limit diagram, AHSS steel, ductile damage model.

1. INTRODUCTION

The fracture mechanism of metallic materials has been proven to be due to micro-
void initiation, growth, and coalescence [1]. A void growth-based ductile fracture crite-
rion, which is most widely applied for predicting crack initiation in various materials was
developed by Gurson [2]. The ductile fracture is known as the simultaneous domination
of the Lode parameter and the stress triaxiality on the plastic strain path [3, 4]. Pathak et
al. [5] investigated the influence of triaxiality and the Lode parameter on the nucleation
behavior of the DP780 and CP800 steel sheets. Accordingly, for both material types, at
a specific strain level, the number of voids per unit volume is highest during the biaxial
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dome test while void nucleation is lowest during the simple shear test. The AHSS sheets
have been widely used in the automotive, maritime, and civil industries due to their ex-
cellent strength, good crash energy absorption, and high corrosion resistance. Neverthe-
less, they are formed by hot and cold rolling processes leading to changes in the crystal
structure which is the root of anisotropic properties, meaning plasticity in various orien-
tations is not the same. Li et al. [6] investigated the anisotropic fracture behavior of AHSS
sheet in a large range of stress states from the stress states from simple shear, and uniaxial
tension, to plane strain tension and concluded that the anisotropic fracture behavior of
AHSS steel is highly dependent on the stress states. The plastic damage criteria can be
established based on stress or strain states [7]. By observing deformed microstructures
under different strain conditions in several types of High Strength Low Alloy (HSLA),
Dual Phase (DP), and Transformation Induced Plasticity (TRIP) steel, Nikhare et al. [8]
showed that there are very different forming and fracture behaviors depending on the
deformation mode.

With the rapid proliferation of 3rd generation AHSS steels to satisfy modern manu-
facturing demands, in some cases, the previous ductile fracture prediction models are no
longer suitable for accurately predicting the crack initiation of these advanced materials.
This has motivated a community of researchers to improve existing ductile damage crite-
ria and continue to propose novel crack prediction models. Zhang et al. [9] modified the
DF2010 ductile fracture criterion to formulate a semi-coupled ductile fracture model for
DP590 steel. The new model shows the accurate predictability of the fracture behavior
of DP590 materials under different stress states. Aydiner et al. [10] adopted the crystal
plasticity and cohesive zone frameworks conjugated with a ductile failure model in 3D
polycrystalline materials to investigate the failure mechanism of dual-phase (DP) steels
via representative volume element (RVE) simulations.

The ductile fracture models mentioned above do not simultaneously include the in-
fluences of the Lode parameter, stress triaxiality, and equivalent stress space during the
loading process. The current study introduces an enhanced ductile fracture model that
considers the simultaneous effects of the Lode parameter and stress triaxiality on forming
behavior. Specifically, the anisotropic high-strength sheet steel DP980 is adopted to val-
idate the proposed model’s applicability for predicting the deformation-based forming
limit curve.

2. DUCTILE FRACTURE MODEL

2.1. Micro-void growth-based ductile damage criterion

A crack criterion based on micro-void growth in elastoplastic materials obeying a
power hardening rule has been proposed by Dung [11]. Three void growth rates in prin-
cipal stress space are presented as follows
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where σi (i = 1, 2, 3) denote principal stress components, dε̄p is the equivalent plastic
strain increment, and m is a material parameter relative to the hardening property of
matrix material.

Assuming that the ductile fracture initiates once the damage accumulated variable
reaches a critical value

Dg = max (D1, D2, D3) = max

 ε̄
p
f∫

0

(dD1, dD2, dD3)

 = D f
g , (4)

where ε̄
p
f is the equivalent plastic strain at fracture, D f

g is a damage constant depending
on specific material.

2.2. Enhanced ductile damage model

Assuming that the material anisotropy obeys the second-order yield criterion Hill48,
the equivalent stress of matrix material is presented in the Cauchy stress space as below

σe =
[

H (σ11 − σ22)
2 + F (σ22 − σ33)

2 + G (σ33 − σ11)
2+2Nσ2

12 + 2Lσ2
23 + 2Mσ2

31

]1/2
, (5)

where σij (i, j = 1, 2, 3) denote normal and shear components of the Cauchy stress ten-
sor; H, F, G, N, L, and M are the anisotropic parameters determined from Lankford’s
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coefficients r0, r45, r90 as follows
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3
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(6)

The coefficients r0, r45, and r90 are identified from uniaxial tensile test.

The principal stresses can be written by the functions of the Lode parameter and
stress triaxiality as below
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where σm = (σ1 + σ2 + σ3) /3 is mean stress; si = σi − σm, (i = 1, 2, 3) are principal devia-
toric stresses, T is an equivalent stress function introduced by Park et al. [7] and given in
Eq. (8), LP is the Lode parameter, η is stress triaxiality, θ is the angle between the rolling
direction and the maximum principal stress direction. Fig. 1 illustrates the discrepancy
between the rolling direction (RD), the transverse direction (TD), and the normal direc-
tion (ND) compared with the principal directions (σ1, σ2, σ3).
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Substituting the equation (7) into the equations (1), (2), and (3), three void growth rates as a 
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Assuming that σ1 ≥ σ2 ≥ σ3, the Hill48 equivalent stress and Lode parameter can be
calculated as follows
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σe =

√
T (σ1 − σ3)

2 and Lp =
2σ2 − σ1 − σ3

σ1 − σ3
. (9)

Substituting Eq. (7) into Eqs. (1), (2), and (3), three void growth rates as functions
depending on the Lode parameter, stress triaxiality, and equivalent stress (Lp, η, σe) only
are archived as follows
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where Rs = σe/σf denotes the ratio between the equivalent stress and the yield stress of
the material, η = σm/σe is stress triaxiality.

The original damage model did not consider ductile fracture under a very low-stress
triaxiality state, that is the value η of zero. McClintock [12] introduced a damage variable
due to shearing and rotating voids during material deformation as follows

εs = ln
(

ℓ

2r

)
= ln

(
ℓ0

2r0

)
− 1

D f
g

∫
dDi , i = 1, 2, 3 (13)

where ℓ0 is the space between two adjacent voids, r0 is the initial void radius when the
material has not yet been deformed.

To consider void-by-void interaction, Xue [13] proposed an artificial strain

εart = ln
√

1 + γ2 = ln
√

1 + 2N (ε̄p)2. (14)
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This work introduced a shear damage variable as below
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The shear damage rate is obtained as follows

dDs =
2Nε̄p[
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]
×
[
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(
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)
− Dg
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The damage variable used for the general loading state

Dt =
1

Dcrit

[
Dg + g (θ) Ds

]
. (17)

The enhanced plastic failure model expressed as a function of the stress state together
with the damage variable is now ready for predicting fracture.

Φ = σe − g (D) σf = 0, (18)

where g (D) = 1 − Dβ
t is a function representing material mechanical deterioration dur-

ing the loading process, β is a softening exponent.

3. FORMING LIMIT PREDICTION

3.1. Numerical implementation of ductile fracture model

The proposed damage model is implemented by a user subroutine using a numerical
algorithm, namely the “cutting plane” introduced by Ortiz and Simo [14]. The implemen-
tation steps are as follows:

Step 1: Calculate the trial stress state using the assumption of an elastic material

σij = Cijkl∆εkl . (19)

Step 2: Calculate the equivalent stress from Cauchy components σij and calculate
yield stress σf using the hardening rule of the material.

Step 3: Check the current stress state. If Φ < 0, the material stress state is elastic;
conversely, if Φ ≥ 0, the matrix material is considered to have plastically yielded, and
the plastic nonlinear problem is solved by the iterative method. The plastic variables
need to be calculated as follows:
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Plastic multiplier

dλ =
Φ

∂Φ
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: Cijkl :
∂Φ
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. (20)

Plastic strain rate tensor components

dε ij = dλ
∂Φ
∂σij

. (21)

Equivalent plastic strain increment

dε̄
p
e =

√
2
3

dε ij : dε ij. (22)

The damage evolution rates are calculated by the equations of (10), (11), (12), and
(16).

Step 4: Check the convergence.

If Φ > 10−7 convergence condition is not satisfied, so the program goes back to
Step 3.

If Φ ≤ 10−7 the program will update plastic variables as follows: the equivalent
plastic strain ε̄

p
e = ε̄

p
e + dε̄

p
e , damage variables Dg = Dg + dDg, Ds = Ds + dDs and

Dt = Dg + g (θ) Ds, and new stress state σij = σij + ∆σij. This process will be iterated
until the occurrence of fracture.

3.2. Numerical simulations

Sheet steel DP980 with a nominal thickness of 0.82 mm is used for validating the
applicability of the proposed model. The mechanical properties of DP980 are given in
Table 1.

Table 1. Mechanical characteristics of DP980 steel [15]

Young’s modulus, E (GPa) Poisson’s ratio, ν Lankford’s coefficients

210 0.3
r0 r45 r90

0.92 0.83 1.04

A hybrid hardening rule which is the combination of a power law Swift and an ex-
ponential function Voce has been used in this work as follows

σf = αA
(
ε0 + ε̄

p
e
)n

+ (1 − α)
{

B + C
[
1 − exp

(
−Dε̄

p
e
)]}

, (23)
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where α is the corrected coefficient, A, ε0, n denote material parameter of the Swift model,
B, C, D are material parameters of the Voce model. The hardening parameters are identi-
fied from the tensile tests and are given in Table 2.

Table 2. Hardening model parameters [15]

Parameter α A (MPa) ε0 n B (MPa) C (MPa) D

Value 0.58 1570 2.56 × 10−5 0.129 548 531 92.8

The damage model parameters are calibrated by comparison between numerical
simulations and experimental data of uniaxial tensile specimens [16]. The values of the
parameters are shown in Table 3.

Table 3. Ductile damage model parameters

Parameter f0 β θ Dcrit

Value 1.5 × 10−4 2 0 50

Six Nakajima-type deep-drawn specimens are employed for numerical simulation;
their dimensions and geometries are given in Fig. 2.

Value 0.58 1570 2.56x10-5 0.129 548 531 92.8 
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 (a) (b) (c) (d) (e)(f) 

Figure 2. Deep drawn specimens : (a) W20, (b) W50, (c) W80, (d) W90, (e) W100, (f) W200  

 

 (a) (b) 

Figure 3. Illustration of finite element mesh: (a) W100 and (b) W50 specimens 

Fig. 2. Deep drawn specimens: (a) W20, (b) W50, (c) W80, (d) W90, (e) W100, (f) W200

The finite element model includes a die, holder, blank, and punch where the die,
holder, and punch are assumed rigid bodies. In contrast, the blank is depicted in the de-
formation of realistic material. For the blank, a finite element mesh is constructed with
different configurations depending on specimen geometries, as illustrated in Fig. 3 for the
W100 and W50 specimens. The Coulomb friction law with a coefficient of friction of 0.05
defines the contact surface between the punch and the blank. Meanwhile, a coefficient of
friction of 0.11 is adopted to define the other contact surfaces. The die is fixed whereas
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Fig. 4. Setup diagram of the Nakajima deep drawing process

a holding force of 250 kN keeps the blank. The punch is constrained by boundary con-
ditions such that it can only move in the vertical direction until fractured initiation. The
finite element model of the deep drawing process is shown in Fig. 4.

The principal strain values at the moment of local necking, which are extracted to
construct a forming limit diagram (FLD) are presented in Fig. 5. The strain field of each
specimen is concentrated into a narrow band at the punch top except for the W200 spec-
imen subjected to biaxial stretch loading as shown in Fig. 5. Three strain paths are ex-
tracted at the necking region in each specimen. Their average value is used to construct a
fitting window according to the ISO 12004-2-2008 standard as illustrated in Fig. 6. Based
on the data fitting method, the major and minor limit strains are picked to construct the
forming limit curve of DP980 steel as shown in Fig. 7. As shown in Fig. 7, the limit strain
values obtained by numerical simulation using the proposed ductile damage model are
in good agreement with experimental data from the literature [15].
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4. CONCLUSION

In this paper, an enhanced ductile damage model is successfully applied to predict
the forming limit of anisotropic sheet metal. Specifically, AHSS steel DP980, which is be-
ing commonly used in the civil engineering industry is adopted to validate the applicabil-
ity of the novel model. The procedure for determining plastic strain limits is conducted
following the ISO 12004-2-2008 standard. Accordingly, six Nakajima-type specimens are
designed to describe various strain states from uniaxial tension, through plane strain,
and biaxial stretch. In general, the predicted results obtained from numerical simula-
tions are consistent with experimental data referred from the published paper. Differ-
ences between predicted results and experimental data may be due to unexpected and
difficult-to-completely control factors, such as finite element mesh size, punch velocity,
and friction coefficient at contact surfaces, etc. Based on the method used in this paper,
the current ductile fracture model can be combined with advanced non-quadratic yield
functions such as yld96 and yld2000 functions to improve the crack prediction accuracy
of sheet metals with complex plastic flow anisotropy.
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