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Abstract. The phenomenon of reflection and transmission of shear wave (horizontally po-
larized) at an imperfect interface between two different transversely isotropic elastic half-
spaces is investigated in this paper. First, the characteristic equation in the transversely
isotropic half-space is derived. The forms of the incident, reflected, and transmitted waves
are derived. Then, from the interface conditions for two cases (perfect and imperfect in-
terfaces), the displacement and stress are required to be satisfied. The reflection and trans-
mission coefficients in terms of the amplitude ratio of various waves are calculated using
interface continuous conditions. The energy ratios of reflected and transmitted waves
of the structures have been computed and shown to observe the law of conservation of
energy. Numerical examples are shown graphically to exhibit the effects of initial stress
as well as the imperfect interface on the phase velocity, phase angles, and reflection and
transmission coefficients.
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1. INTRODUCTION

The study of reflection and transmission of a plane wave at the separating inter-
face of two different media is a very important problem in many research areas such as
non-destructive testing, structural health monitoring, reflection seismology, smart mate-
rial technology [1]. A comprehensive understanding of how initial stresses interact with
wave propagation is essential for accurate predictions of material behavior when acted
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upon by an incident wave. Biot [2] developed a definitive theory that explains the elas-
todynamics of a body under initial stress. An elegant and elaborate exposition of this
theory is found in Biot [3]. The effect of initial stresses in the study of such phenomena
in various materials was investigated by several researchers, such as Chattopadhyay et
al. [4], Garg [5], Guha and Singh [6], Liu et al. [7], etc.

Transversely isotropic elastic materials are a specific class of materials that exhibit
symmetry in their mechanical properties with respect to one axis. This means that while
the material has identical properties in all directions within a plane perpendicular to the
axis of symmetry, it can have different properties along that axis. The equations gov-
erning displacements in the x1x3 plane for P, SV waves are completely uncoupled for
SH wave [8]. Therefore we can consider separately the problem of SH wave propaga-
tion in a transversely isotropic medium. The behavior of transmission coefficients for
shear horizontal (SH) wave propagation with oblique incidence in piezocomposite lay-
ered systems is investigated by Ramos et al. [9]. The transmission behavior of SH waves
in a piezoelectric laminated structure is studied by Alvarez-Mesquida et al. [10]. Qian
et al. [11] studied the effect of initial stress on the propagation behavior of SH-waves in
multilayered piezoelectric composite structures.

In most of the above studies, the interface bonding between any two media is as-
sumed to be perfect/welded. However, after a period of time, the perfect bonding or
continuity of mechanical and electrical properties at the interface may be affected by
several reasons like the aging of the applied glue at the interface, micro defects, diffu-
sion of impurities, interface damage or defects in fabrication and corrosion of materials,
etc. Imperfect bonding means that the stress components are continuous and a small
displacement field is not. For an imperfect interface, the spring model of Hashin is com-
monly used. In this model, the normal and tangential interfacial stiffnesses characterize
the properties of the imperfect interface between the two solids [12,13]. Several authors
have considered the effect of imperfect bonding on their problems, for example, Barak
and Kaliraman [14], Goyal et al. [15], Huang and Rokhlin [13], Kumar et al. [16], Pang
and Liu [17], Singh [18], etc. Tung [19,20] investigated the influence of boundary condi-
tions on the reflection and transmission of qP-wave at an interface between two nonlocal
transversely isotropic elastic, liquid-saturated porous half-spaces.

The reflection and transmission of SH waves at an imperfect interface between two
transversely isotropic elastic half-spaces with pre-stress effects taken into account are
investigated in this paper. Moreover, the normal and shear initial stresses are considered
instead of only considering the normal initial stress in most of the literature.
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2. BASIC EQUATIONS AND FORMULATION OF THE PROBLEM

To consider the SH wave propagating in the x;-direction and causing displacement
in the xp-direction only, its displacement component is given by

up = up(x1,x3), w3 =uz=0. (1)

The constitutive relations for a homogeneous transversely isotropic elastic medium
can be written as [8,21]
021 = Ce6liz1, 023 = Caalin3, ()
where 071, 023 are the components of stress and ca4, ces are elastic constants of the trans-
versely isotropic material.

The mechanical governing equation with initial stress (without body forces) consid-
ered can be expressed as [7,21,22]

oiji + (ujro;) i = piij, 3)
where p is the mass density, o). are components of initial stresses, the temporal deriv-

ative, spatial derivative are denoted by the superposed dot, a comma in the subscript,
respectively.

Inserting (2) into (3) and taking into account (1), we have the displacement equation
of motion for SH wave that propagates in the x;1x3 plane, namely

(C66 + 0'?1)1/[2,11 + 20'?31«12,13 + (644 + 0':?3)L[2{33 = pii. 4)

As illustrated in Fig. 1, the present research analyses the reflection and transmission
phenomenon of SH wave at the interface of two transversely isotropic elastic half-spaces
with interfacial imperfection. Let us assume a Cartesian coordinate system in such a way
that x;-axis lies along the separating interface of two halfspaces and x3-axis is pointing
vertically upwards. For the oblique incidence of the gSH wave from the Q" medium at
the interface x3 = 0, all kinds of scattered waves are depicted in Fig. 1.

Now, considering the generalized Snell’s law, which states that the apparent wave
number is the same for each wave, the solution of (4) is considered as [19,20]

Uy = aeik(xl +&xz—ct) (5)

7

where k is the x;-component of the wavenumber, c is phase velocity along x1, ¢ is an
unknown ratio of the wave vector components along the x3- and x;-directions, a is the
unknown amplitude of the displacement.

With the aid of (5), Eq. (4) and the condition for a non-trivial solution in a, we obtain
a two-degree polynomial equation for ¢, namely

tE 4+ HE+tg =0, (6)
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where
_ 0 . n0 _ 0 2
fp = Caq+033, 1t = 20’13, to = ce6 + 077 — pC”. (7)

Fig. 1. Geometry of the problem

From the characteristic equation (6), it can be seen that there are two quasi-transverse
(qSH) waves that propagate in opposite directions in the medium. To find the expression
of the velocity of qSH wave in this medium, we consider a plane wave with phase veloc-
ity v in the direction making an angle 6 with the vertical axis that is expressed by

Uy = aeikg(p1x1+p3x3—vt)’ (8)
where p; = sinf, p3 = — cos 6 are components of the propagation unit vector. It is noted
that kp = — and v = p;yc. Substituting (8) into (4), we obtain a real root v corresponding

1
to the speed of qSH wave propagating in the medium.

©)

o ¢(066 +071)pi + 2095193 + (cas + 035) 3
p

3. BOUNDARY CONDITIONS

To investigate the influence of the imperfect interface on the reflection and transmis-
sion of waves at the separating interface of two halfspaces, we consider two distinct types
of interface at x3 = 0.
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(i) Perfect interface: In case of perfect interface, the stresses and displacement are
continuous at the interface [23,24].
t_ = o0+ 0+ — = 0 — 0, -
Uy =1y, Op+0y3Uy  + 033Uy 3 = Op3 + 013Uy 1 + 0331y 3. (10)
(ii) Imperfect interface: In this case, the spring model is introduced [12,13,25]. The
displacements are discontinuous at the interface [21,26,27].
+ 0+ 0,+ _ + —
0p3 + 013Uy + 033U 3 = kr(uy —uy ), 11
+ 0+ 0+ — = 0 — 0, -
U3+ O13ly ) + 033ty 3 = U3 + Oy3ly 1 + O3l 3,
where k7 denotes the interface parameter characterizing the interfacial imperfection and
it has the dimension of N/m?.

4. THE REFLECTION, TRANSMISSION COEFFICIENTS

From the characteristic equation (6), the incident qSH wave at the interface will gen-
erate the reflected qSH wave in half-space Q" and the transmitted qSH wave in the ()~
as shown in Fig. 1.

A gSH wave is incident at the interface x3 = 0 from the upper half-space Q. Based
on (5), the displacement of the incident wave can be given as

ug — uoeik(x1+CQX3fCt) (12)

After reflecting at the interface x3 = 0, the reflected qSH wave propagates in half-
space QO and its displacement has the form

uy = apelkatere—c) (13)

The transmitted qSH wave propagates in half-space ()~ as shown by
U3 = apektiars—ct), (14)
Now, in view of Egs. (12) to (14), the interface conditions given by (10) reduce to the
following form

{ —a1 + ap = ag,

) (15)
—((cgy + 055)&1 + ‘7?3)“1 + ((cg + 095) & + ‘7?3)“2 = ((cfy + 093)&0 + ‘7?3)”0-

Similarly, substituting (12)—(14) into the boundary conditions (11), we get two equa-
tions

. .k k k , ,
<(CZ4 +0%35)i¢1 + o751 — kT> ar + %ﬂz = <kT — (cdy + 0%5)i0 — ‘7?31> ao,
(16)

— ((cfy + 055)&1 + ‘7?3) a1+ ((cg + 055) 82 + ‘7?3) ay = ((cgy + 055)&0 + ‘7?3> ao-
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Egs. (15), (16) give the reflection, transmission coefficients (RTCs) which are defined
by the ratio of the reflected /transmitted amplitudes to the incident amplitude for perfect
and imperfect interfaces, respectively.

R=4 1=2 (17)
ag ao

The reflection and transmission of SH waves at imperfect interfaces have wide-
ranging real-world applications, including non-destructive testing, geophysical explo-
ration, earthquake engineering, material characterization, acoustic microscopy, and
guided wave testing. These applications leverage the unique properties of SH waves
to detect and characterize imperfections at interfaces, providing critical insights into the
integrity and performance of materials and structures.

5. VALIDATION

We can see that the reflection and transmission coefficients in terms of the ampli-
tude ratio of various waves are calculated by the use of interface continuous conditions.
To validate directly the numerical results with consideration of energy conservation, the
energy flux reflection and the transmission coefficients are calculated instead of the dis-
placement amplitude ratio.

Now we compute the distribution of energy among the reflected and transmitted
waves due to the incidence of qSH wave at its separating interface. They should be
checked to ensure that the energy of incident waves is equal to the energy sum of re-
flection and transmission waves. The scalar product of the surface traction and particle
velocity per unit area denoted by P; represents the rate at which energy is communicated
per unit area at the surface x3 = 0. This is given by [21,23,28]

. 0 .
Pl‘ = —u]'(fji - Uiku]-,kuj. (18)

In one period, the mathematical expression for averaged energy flux is given by
1 - .
Pr = ERe( — 1 0ji — (Tg{uj,ku;‘), (19)
where asterisks(*) appearing above the notations denote the complex conjugate of the

derivative of the displacement components.

We may obtain the expressions of average energy flux E!, E"5H, E5H of the inci-
dent qSH wave, reflected qSH and transmitted qSH waves, respectively, through the unit
area perpendicular to the propagation direction of the said waves for the pre-stressed
medium.
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_1

1
E' = _Kc[cf,Co + ois + 0%5]a5, E'PH = Ekzc [ciil1 + o5 + 0353,

> (20)
EMSH = Ekzc [cpulo + 075 + 053] a3.
Er9SH EtaSH
Denoting E, = £ Ei = T The expressions of all energy ratios defined above
must satisfy the condition
E=E+E =1 (21)

6. NUMERICAL CALCULATION AND DISCUSSION

To illustrate the theoretical results obtained, numerical calculations were performed.
For convenience in the numerical analysis, we introduce the dimensionless quantities

+ 0 0 0 —
f+_C@ +_m1 o+ _ %13 o+ _ f_Cj
1_C+/ 1_C+/ 2_C+/ 3_C+/ 0_C+/
44 44 44 44 55 (22)
co g a? ad k
- _ 66 - _ ‘11 - _ ‘13 - _ /33 _ T
fi=2 & =" &="7", 8& =2, fT—k+~
Cyy Cyy Cyy Cyy Cs5

The values of relevant elastic parameters for two half-spaces are taken following [15]:
- For half-space ()": Material constants for AIN are as follows:

¢y =118 x 10" Nm ™2, ¢, =395x 10" Nm 2, p" =3.62x 10> kgm .

- For half-space ()7: Material constants for BaTiO3 are given as:

C = 0453 x 10" Nm ™2, ¢ =162x 10" Nm 2, p~ =58x10°kgm .

Besides, the values of the initial stresses are given as 0}; = 0.4 x 101 Nm™2, ¢, =
—0.1 x 10" Nm ™2, 05 = 0.8 x 10" Nm ™2, and the x;-component of the wavenumber k
is fixed at 1. The tangential spring constant is such that kt = 2.0 in the imperfect interface
case. In the perfect interface case, kt = 2100,

To investigate the effects of initial stress, the reflection and transmission angles as
well as the reflection and transmission coefficients are computed for different incident
angles. The numerical results with initial stress and without initial stress are both shown
in one figure to facilitate the comparison. Specifically, the ones of waves in the presence
and absence of initial stress are illustrated by the solid line and dashed line, respectively.

The effect of the initial stress on the dimensionless velocities of qSH waves is plotted
in Fig. 2. It can be seen from this figure that the velocities in the medium with the initial
stress are greater than those in the medium without the initial stress.
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Fig. 2. Velocities of waves for presence and absence of the initial stress

Fig. 3 shows the effect of the initial stress on the RTCs in the case of the perfect in-
terface. The RTCs of the reflected and transmitted waves are affected by the initial stress.
Contrary to this, in the case of the imperfect interface, the RTCs are unaffected by the
initial stress. It can be seen that the total reflection phenomenon appears in this case (see
Fig. 4). The effect of initial stress on SH wave reflection and transmission is critical in
fields like seismology, geophysics, non-destructive testing, and structural engineering.
Initial stress alters the reflection and transmission coefficients of SH waves at interfaces.
These coefficients depend on the impedance contrast between the two media, which is
influenced by the initial stress. Understanding and accounting for the influence of initial
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Fig. 3. The effect of the initial stress on the RTCs for the case of the perfect interface
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stress is essential for accurate analysis and interpretation of SH wave behavior at inter-
faces in real-world scenarios.
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Fig. 4. The effect of the initial stress on the RTCs for the case of the imperfect interface

Fig. 5 is plotted to describe the influence of distinct common interfaces on RTCs. The
comparative study of the RTCs curves suggests that the reflection coefficient R is domi-
nant for the imperfect interface (k7 = 2) and the transmission coefficients T for this case
are negligibly small in the whole range of incident angles, while the transmission coef-
ticient T is quite large for the perfect interface (kr — 0). Moreover, the corresponding
curves of RTCs for the imperfect interface (Fig. 5(b)) and perfect interface (Fig. 3) cases are
coincident in the range 1°-89°. This confirms the correctness of numerical calculations.
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Fig. 5. The RTCs of waves for distinct common interfaces
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Fig. 6 depicts the variation of energy ratios of reflected and transmitted waves with
the angle of incidence for the presence and absence of initial stress. The ratios E; (E;) in
the medium with the initial stress are greater (lower) than those in the medium without
the initial stress in the range 60°-89°. Fig. 6 once again confirms that the computational
results in this section are fully reliable.
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It is assumed that the wave propagation direction deviates from the positive x3 axis
with angle 6, then Real({) = cot(8), which will be used to compute the reflection and
transmission angles. Fig. 7 shows the effects of initial stress on the reflection and trans-
mission angles. It is found that the existence of the initial stress makes the transmission
angle increase while the reflection angle decreases. Moreover, the value of the angle of
reflection will not be equal to the value of the angle of incidence when the initial stress
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Fig. 8. Effects of initial stress 0{; on the reflection and transmission angles
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appears in the medium. It is interesting that when the values of ¢}; and ¢3; remain un-
changed while the value of o5 decreases by a factor of 100, the reflection angle is always
equal to the incident angle in the range of incident angles 1°-89° (see Fig. 8(a)). When the
value of ¢l increases by a factor of 100, the transmission angles are significantly greater
than the reflection angles (see Fig. 8(b)). This shows that the value of the initial stress o5
has an important influence on the propagation of the qSH wave.

7. CONCLUSIONS

In conclusion, a mathematical study of the effects of the initial stress on the reflec-
tion and transmission coefficients at an imperfect interface separating two transversely
isotropic elastic solid half-spaces is made when the qSH wave is incident. Some impor-
tant conclusions are given below:

(i) For the incident qSH wave, the expressions for reflection and transmission coeffi-
cients as well as the energy ratios of waves in the imperfect/perfect cases are given.

(ii) The effect of the initial stress on RTCs is found for the imperfect and perfect
interfaces.

(iii) The dependence of the dimensionless velocities of the incident waves as well as
the reflection and transmission angles of reflected and transmitted waves on the incident
angle for the presence and absence of initial stress is illustrated graphically.

The initial stress has a significant effect on the SH wave propagation in transversely
isotropic structures through the modified phase velocity. This makes it an essential pa-
rameter that should be considered when designing semiconductor devices. The results
obtained are fundamentally useful when the initial stress is involved. Moreover, our
formulas can provide some fundamental insights for deriving RTCs formulas on the
welded and non-welded interfaces between two more complex media. These results can
be recorded and used as the input data of the inverse problem (nondestructive evaluation
of materials).
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