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Abstract. A simplified model is proposed for modal analysis of cracked 3D-framed over-
head crane of H-form frame using the well-known dynamic stiffness method. First, the
dynamic stiffness of a cracked beam is derived as the inverse of the frequency response
function and used for establishing a model of the cracked beam called dynamic stiffness
one. Then, the dynamic stiffness model of cracked beams is employed for representing
two supporting beams in the H-form frame crane. So that a simplified model of the over-
head crane is conducted as a beam with artificial elastic supports of stiffness obtained
above for supporting beam. Finally, the free vibration problem of the simplified overhead
crane is formulated and solved for the crane fundamental frequency analysis in depen-
dence upon crack parameters and supporting positions. Numerical computation is ac-
complished for illustrating the proposed theory and providing some conclusions on the
simplified model of 3D overhead cranes.

Keywords: overhead crane, cracked frame, dynamic stiffness, free vibration.

1. INTRODUCTION

Cranes are very important instruments in construction and transportation and dy-
namic analysis of such structures is truly vital in both stages of designing and operating,
especially for the massive cranes [1]. Dynamic analysis of cranes is required not only to
evaluate the dynamic load capacity but also for their control and health monitoring [2].
Cranes may be classified into three classes: overhead (gantry), tower (rotary), and mobile
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(boom) cranes (see Fig. 1); however, overhead cranes are the most gigantic and widely
used in industry for the transportation of heavy loads. The fundamental problems of
modeling and control of overhead cranes were presented in [3]. The dynamics of an
overhead crane in the simplest model were studied in [4], in which the supporting struc-
ture is ignored, and the crane is treated as a simply supported beam with a pendulum
moving on it. This is only a planar model of overhead cranes.

(a) Overhead (b) Tower (c) Mobile

Fig. 1. Typical cranes

The modeling, control, and dynamics of three-dimensional overhead cranes were in-
vestigated in [5, 6], where, however, the authors focused only on the three-dimensional
motion of the pendulum. The dynamics of a three-dimensional overhead crane with
an elastic framed supporting structure were studied in [7] by using the finite element
method (FEM). Natural frequencies of the 3D-framed overhead crane computed by FEM
in this work were compared to experimental results. However, the difference between
FEM-computed and measured natural frequencies is shown to be large, more than 20%.
The so-called dynamic stiffness method (DSM) is an alternative technique that could sig-
nificantly improve the FEM in the dynamic analysis of frame structures [8], especially,
for cracked structures [9, 10]. Nevertheless, the DSM has been used only for dynamic
analysis of tower cranes with cracks in [11–13].

Thus, in the present study, the DSM is developed for modal analysis of cracked 3D-
framed overhead crane of H-form as shown in Fig. 2. First, the dynamic stiffness of a
cracked beam is derived as the inverse of the frequency response function [14] and used
for establishing a model of the cracked beam called dynamic stiffness model. Then, the
dynamic stiffness model of cracked beams is employed for representing two supporting
beams in the frame crane shown in Fig. 2. So that a simplified model of the overhead
crane is conducted as a beam with artificial elastic supports of stiffness obtained above
for supporting beams (Fig. 3). Finally, free vibration problem of the simplified overhead
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crane is formulated and solved to analyze the crane fundamental frequency in depen-
dence upon crack parameters and supporting positions. Numerical computation is ac-
complished for illustrating the proposed theory and providing some conclusions on the
use of the simplified model of 3D overhead cranes.

2. A SIMPLIFIED MODEL OF OVERHEAD CRANE

Let’s consider an overhead crane given in Fig. 2 composed of three connected beams
AB, CD, and EF. The first two beams AB and CD are parallel rails, and the third beam EF
is perpendicular to AB and CD served as bridging crane beam. This framed structure can
be easily modeled by either the conventional finite element method [10] or the dynamic
stiffness technique [9]. However, neither of the well-known methods including the ones
mentioned above can result in an analytical solution to the vibration problem of the 3D-
frame structure simply like that solution obtained for a single beam. Thus, in the present
section, we propose an approach to simplify the 3D frame structure to a beam structure
so that its vibration problem can be easily solved by the classical analytical method.

Fig. 2. Model of an overhead bridge crane

As shown in Fig. 2, the EF beam is rested on the elastic beams AB and CD at its
ends, and they are all together vibrating as members of the total frame. Therefore, it can
be treated that the EF beam is rested on elastic boundary supports at the position s on
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the AB and CD beams measured from their origins B and C. The equivalent model of
the overhead crane is shown in Fig. 3, where the question is how to select an equiva-
lent stiffness for the elastic end supports to represent the supporting beams adequately.
Conventionally, the stiffness of the elastic supports is selected as the static stiffness of the
beams at a given position, and it can be calculated by a classical method of the structural
mechanics. However, this selection ignores the inertia of the supporting beams under
vibration, and it is difficult to choose for the case when the supporting beams contain
damages such as cracks. We propose in this study to select the dynamic stiffness of the
beams at the supporting point that can be constructed in the subsequent section for mul-
tiple cracked beams.

  
Fig. 3. Reduced model of overhead crane 

 

Thus, considering mechanical system given in Fig. 3, where two springs supporting the beam have dynamic 
stiffness 𝐾!, 𝐾" respectively. As it is well known that under harmonic forces of frequency ω and amplitudes

the springs undergo the displacements of amplitudes  satisfying the relationship:  

  𝑃! = 𝐾!𝑤!, 𝑃" = 𝐾"𝑤".                                                              (2.1) 

On the other hand, for the beam vibrating with boundary deflection amplitudes denoted by 𝑤! =
𝑊(𝜔, 0), 𝑤" = 𝑊(𝜔, 𝐿), the corresponding shear forces are determined as 

.                                             (2.2) 

 Hence, boundary conditions for the beam given in Fig. 2.2 should be 

𝐸𝐼𝑊‴(𝜔, 0) + 𝐾#$(𝜔, 𝑥̄)𝑊(𝜔, 0) = 0;	𝐸𝐼𝑊‴(𝜔, 𝐿) − 𝐾%&(𝜔, 𝑥̄)𝑊(𝜔, 𝐿) = 0                  (2.3) 

with 𝐾#$(𝜔, 𝑥̄)and 𝐾%&(𝜔, 𝑥̄) being dynamic stiffness of AB and CD beams calculated at position 𝑥̄. The next 
section is devoted to constructing the dynamic stiffness of AB and CD beams with cracks. 

3. DYNAMIC STIFFNESS MODEL OF MULTIPLE CRACKED BEAM 

It is well known that vibration of Euler-Bernoulli beam subjected to a force concentrated at position 𝑥!, 
described by the equation [10]: 

𝐸𝐼𝜕'𝑊(𝑥, 𝑡)/𝜕𝑥' + 𝜌𝐹𝜕(𝑊(𝑥, 𝑡)/𝜕𝑡( = 𝑃(𝑡)𝛿(𝑥 − 𝑥!),                               (3.1) 

that is transformed into the frequency domain equation: 

𝐸𝐼𝑑'𝛷(𝑥,𝜔)/𝑑𝑥' − 𝜌𝐹𝜔(𝛷(𝑥,𝜔) = 𝑄(𝜔)𝛿(𝑥 − 𝑥!).                                 (3.2) 

Using the notation 

𝜆 = (𝜌𝐴𝐿'𝜔(/𝐸𝐼)1/4; 𝑄!(𝜔) = 𝑄(𝜔)/𝐸𝐼,                                           (3.3) 

Eq. (3.2) can be rewritten in the form: 

𝑑'𝛷(𝑥,𝜔)/𝑑𝑥' − 𝜆'𝛷(𝑥,𝜔) = 𝑄!(𝜔)𝛿(𝑥 − 𝑥!), 𝑥 ∈ [0,1] .                              (3.4) 

For the beam cracked at positions 0 ≺ 𝑒" ≺ ⋯ .≺ 𝑒, ≺ 1, general solution of the equation 

𝑑'𝛷(𝑥,𝜔)/𝑑𝑥' − 𝜆'𝛷(𝑥,𝜔) = 0,                                                  (3.5) 

 denoted by 𝛷!(𝑥, 𝜔 can be represented by [10] 

𝛷!(𝑥, 𝜔) = 𝐶"𝛷"(𝑥, 𝜔) + 𝐶(𝛷((𝑥, 𝜔),                                              (3.6) 

where 

𝛷"(𝑥, 𝜔) = 𝐿"(𝑥, 𝜆) + ∑ 𝜇"-𝐾(𝑥 − 𝑒. , 𝜆),
./" ; 𝛷((𝑥, 𝜔) = 𝐿((𝑥, 𝜆) + ∑ 𝜇(-𝐾(𝑥 − 𝑒. , 𝜆),

./"         (3.7) 

with the vectors of damage parameters 𝜇" = (𝜇"", … , 𝜇",)0 , 𝜇( = (𝜇(", … , 𝜇(,)0determined from crack 
magnitudes 𝛾. , 𝑗 = 1,2, … , 𝑛 as  

𝜇". = 𝛾.[𝐿"″ P𝑒. , 𝜆Q + ∑ 𝜇"-𝑆″(𝑒. − 𝑒- , 𝜆)]
.1"
-/" ; 𝜇(. = 𝛾.S𝐿(″ P𝑒. , 𝜆Q + ∑ 𝜇(-𝑆″P𝑒. − 𝑒- , 𝜆Q

.1"
-/" T,    (3.8) 

and  

( ) ( )!"! "!ω ω ( ) ( )!"! "!ω ω

( ) ( ) ( ) ( )!" "! "#$ % %! "#$ %&ω ω ω ω′′′ ′′′= − =

  

Fig. 3. Reduced model of overhead crane

Thus, considering mechanical system given in Fig. 3, where two springs support-
ing the beam have dynamic stiffness K0, K1 respectively. As it is well known that under
harmonic forces of frequency ω and amplitudes P0(ω), P1(ω) the springs undergo the
displacements of amplitudes w0(ω), w1(ω) satisfying the relationship

P0 = K0w0, P1 = K1w1.

On the other hand, for the beam vibrating with boundary deflection amplitudes
denoted by w0 = W (ω, 0) , w1 = W (ω, L), the corresponding shear forces are deter-
mined as

P0(ω) = −EIW ′′′(ω, 0), P1(ω) = EIW ′′′(ω, L).

Hence, boundary conditions for the beam given in Fig. 3 should be

EIW ′′′ (ω, 0) + KAB (ω, x)W (ω, 0) = 0, EIW ′′′ (ω, L)− KCD (ω, x)W (ω, L) = 0, (1)

with KAB (ω, x) and KCD (ω, x) being dynamic stiffness of AB and CD beams calculated
at position x. The next section is devoted to constructing the dynamic stiffness of AB and
CD beams with cracks.

3. DYNAMIC STIFFNESS MODEL OF MULTIPLE CRACKED BEAM

It is well known that vibration of Euler–Bernoulli beam subjected to a force concen-
trated at position x0, described by the equation [10]
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EI∂4W (x, t) /∂x4 + ρF∂2W (x, t) /∂t2 = P (t) δ (x − x0) ,

that is transformed into the frequency domain equation

EId4Φ (x, ω) /dx4 − ρFω2Φ (x, ω) = Q (ω) δ (x − x0) . (2)

Using the notation

λ =
(

ρAL4ω2/EI
)1/4

, Q0 (ω) = Q (ω) /EI,

Eq. (2) can be rewritten in the form

d4Φ (x, ω) /dx4 − λ4Φ (x, ω) = Q0 (ω) δ (x − x0) , x ∈ [0, 1]. (3)

For the beam cracked at positions 0 < e1 < . . . < en < 1, general solution of the
equation

d4Φ (x, ω) /dx4 − λ4Φ (x, ω) = 0, (4)

denoted by Φ0 (x, ω) can be represented by [10]

Φ0 (x, ω) = C1Φ1 (x, ω) + C2Φ2 (x, ω) , (5)

where

Φ1 (x, ω) = L1 (x, λ) +
n

∑
j=1

µ1kK
(
x − ej, λ

)
,

Φ2 (x, ω) = L2 (x, λ) +
n

∑
j=1

µ2kK
(
x − ej, λ

)
,

(6)

with the vectors of damage parameters µ1 = (µ11, . . . , µ1n)
T , µ2 = (µ21, . . . , µ2n)

T deter-
mined from crack magnitudes γj, j = 1, 2, . . . , n as

µ1j = γj

[
L′′

1
(
ej, λ

)
+

j−1

∑
k=1

µ1kS′′ (ej − ek, λ
)]

,

µ2j = γj

[
L′′

2
(
ej, λ

)
+

j−1

∑
k=1

µ2kS′′ (ej − ek, λ
)]

,

and

K (x, λ) =

{
0, x ≤ 0
S(x, λ), x > 0

, S (x, λ) = [sinh λx + sin λx] /2λ.

Table 1. Boundary condition functions

Boundary Conditions L1 (x, λ) L2 (x, λ) p q

Clamped end sinh λx − sin λx cosh λx − cos λx 0 1
Free end sinh λx + sin λx cosh λx + cos λx 2 3

Hinged support sin λx sinh λx 0 2
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Assuming furthermore that functions L1 (x, λ) , L2 (x, λ) in (5)–(6) are solutions of
Eq. (4) satisfying boundary conditions at the left end, x = 0, that are given in Table 1 for
conventional boundary conditions.

Next, according to the theory of differential equations, general solution of inhomo-
geneous equation (3) can be expressed as

Φ (x, ω) = Φ0 (x, ω) + Q0 (ω) H (x − x0, λ) , (7)

where

H (x, λ) =

{
0, when x ≤ x0

h (x, λ) , when x > x0
, h (x, λ) = [sinh λx − sin λx] /2λ3.

Substituting solution (7) into boundary conditions at the beam end, x = 1, that is
represented by

Φ(p) (1, ω) = Φ(q) (1, ω) = 0,

where p, q are given also in Table 1, one obtains equations for determining constants
C1, C2 as {

C1Φ(p)
1 (1, ω) + C2Φ(p)

2 (1, ω) = −Q0 (ω) h(p) (1 − x0, λ) ,

C1Φ(q)
1 (1, ω) + C2Φ(q)

2 (1, ω) = −Q0 (ω) h(q) (1 − x0, λ) .

It is easily to verify that the latter equations give rise the solution

C1 = Q0C1/D, C2 = Q0C1/D,

where the coefficients

D (ω) = Φ(p)
1 (1, ω)Φ(q)

2 (1, ω)− Φ(q)
1 (1, ω)Φ(p)

2 (1, ω) ,

C1 = h(q) (1 − x0, λ)Φ(p)
2 (1, ω)− h(p) (1 − x0, λ)Φ(q)

2 (1, ω) ,

C2 = h(p) (1 − x0, λ)Φ(q)
1 (1, ω)− h(q) (1 − x0, λ)Φ(p)

1 (1, ω) .

Thus, solution (7) can be rewritten as

Φ (x, ω) = Q0 (ω)
{

H (x − x0, λ) +
[

C1 (x0, ω)Φ1 (x, ω)

+C2 (x0, ω)Φ2 (x, ω)
]

/D (ω)
}

.

Therefore, the frequency response function defined as Φ(x, ω)/Q(ω), can be obtained in
the form [14]

FRF (x, x0, ω) = (1/EI)
{

H (x − x0, λ) +
[

C1 (x0, ω)Φ1 (x, ω)

C2 (x0, ω)Φ2 (x, ω)
]

/D (ω)
}

.
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On the other hand, the so-called dynamic stiffness of the beam is defined as K (ω, x, x0) =

1/FRF (ω, x, x0) or

K (ω, x, x0) = EI × D (ω) / [H (x − x0, λ) D (ω)

+C1 (x0, ω)Φ1 (x, ω) + C2 (x0, ω)Φ2 (x, ω)
]

.

In case, if x0 = x = s (acknowledged herein as driven collocation) the dynamic stiffness
gets to be

K (ω, s) = EI × D (ω) /
[

C1 (s, ω)Φ1 (s, ω) + C2 (a, ω)Φ2 (s, ω)
]

. (8)

Now, we consider specifically the case of beam with single crack of magnitude γ at posi-
tion e that gives Eq. (8) reduced to

K (ω, s, e) = EI [D0 (λ) + γDc (λ, e)] / [F0 (λ, s) + γFc (λ, s, e)] ,

where
D0 (λ) = L(p)

1 (1) L(q)
2 (1)− L(p)

2 (1) L(q)
1 (1) ,

F0 (λ, x) = C10 (x) L1 (x) + C20 (x) L2 (x) ,

Dc (λ, e) =
[

L(q)
2 (1) L′′

1 (e)− L(q)
1 (1) L′′

2 (e)
]

S(p) (1 − e)

+
[

L(p)
1 (1) L′′

2 (e)− L(p)
2 (1) L′′

1 (e)
]

S(q) (1 − e) ,

Fc (λ, s, e) =
[
C10 (s) L′′

1 (e) + C20 (x) L′′
2 (e)

]
K (s − e)

+
[
L1 (s) L′′

2 (e)− L2 (s) L′′
1 (e)

]
C12 (s, e) ,

C10 (s) = h(q) (1 − s) L(p)
2 (1)− h(p) (1 − s) L(q)

2 (1) ,

C20 (s) = h(p) (1 − s) L(q)
1 (1)− h(q) (1 − s) L(p)

1 (1) ,

C12 (s, e) = h(q) (1 − s) S(p) (1 − e)− h(p) (1 − s) S(q) (1 − e) .

For simply supported beam when L1 (x, λ) = sin λx, L2 (x, λ) = sinh λx, p = 0, q = 2
one obtains

D0(λ) = 2λ2 sinh λ sin λ,

F0 (λ, s) = (1/λ) [sinh λ sin λ (1 − s) sin λs − sin λ sinh λ (1 − s) sinh λs] ,

Dc (λ, e) = −λ3 sin λ (1 − e) [sinh λ sin λe + sinλ sinh λe] ,

Fc (λ, s, e) = λ [D1 (λ, s, e)− D0 (λ, s, e)K (s − e)] ,

with

D1 (λ, s, e) = (1/2)


sinh λe sin λ (1 − e) sinh λ (1 − e) sin λs
+ sinh λe sinh λ (1 − e) sin λ (1 − s) sin λs
+ sin λe sin λ (1 − e) sinh λ (1 − s) sinh λs
+ sin λe sinh λ (1 − e) sin λ (1 − s) sinh λs

 ,

D0 (λ, s, e) = sinh λ sin λe sin λ (1 − s) + sin λ sinh λe sinh λ (1 − s) .



An application of the dynamic stiffness concept for vibration of three-dimensional cracked overhead crane 79

Moreover, for uncracked simply supported beam the dynamic stiffness gets to be

K (ω, s) = 2EIλ3 sinh λ sin λ/ [sinh λ sin λ (1 − s) sin λs − sin λ sinh λ (1 − s) sinh λs] .

Particularly, the dynamic stiffness at the beam middle (s = 1/2) is

KL/2 (ω) = 4EIλ3/ [tan λ/2 − tanh λ/2] . (9)

From (9) it can be easy to calculate the limit:

lim
ω→0

KL/2 (ω) = 48EI/L3,

that is static stiffness calculated at the middle of a simply supported beam in the struc-
tural mechanics [9].

4. VIBRATION OF CRACKED OVERHEAD CRANE

4.1. Vibration shape of cracked overhead crane

Consider now an overhead crane modeled by a simple beam supported on artificial
springs of dynamic stiffness K0, K1 calculated by formulae (8) for two supporting beams.
In that case, since boundary conditions (1) are not conventional, general solution of Eq. (4)
must be expressed in the form [10]

Φ0 (x, ω) = C1Φ1 (x, ω) + C2Φ2 (x, ω) + C3Φ3 (x, ω) + C4Φ4 (x, ω) , (10)

where

Φ1 (x, ω) = L1 (x, λ) +
n

∑
j=1

µ1jK
(
x − ej, λ

)
,

Φ2 (x, ω) = L2 (x, λ) +
n

∑
j=1

µ2jK
(
x − ej, λ

)
Φ3 (x, ω) = L3 (x, λ) +

n

∑
j=1

µ3jK
(
x − ej, λ

)
,

Φ4 (x, ω) = L4 (x, λ) +
n

∑
j=1

µ4jK
(
x − ej, λ

)
with functions

L1 (x) = (sinh λx + sin λx) /2, L2 (x) = (cosh λx + cos λx) /2,

L3 (x) = (sinh λx − sin λx) /2, L4 (x) = (cosh λx − cos λx) /2,

K (x, λ) =

{
0, x ≤ 0
S(x, λ), x > 0

, K′ (x, λ) =

{
0, x ≤ 0
S′ (x, λ) , x > 0

,

K′′ (x, λ) =

{
0, x ≤ 0
S′′ (x, λ) , x > 0

, S (x, λ) = [sinh λx + sin λx] /2λ,
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and damage parameters µk = (µk1, . . . , µkn)
T , k = 1, 2, 3, 4 determined by

µij = γj

[
L′′

i
(
ej, λ

)
+

j−1

∑
k=1

µjkS′′ (ej − ek, λ
)]

, i = 1, 2, 3, 4.

Following the simplified model of the overhead crane under consideration, the solution
(10) must satisfy the boundary conditions

EIΦ′′ (0, ω) = EIΦ′′′ (0, ω) + K0 (ω)Φ (0, ω) = 0,

EIΦ′′ (1, ω) = EIΦ′′′ (1, ω)− K1 (ω)Φ (1, ω) = 0,
or

Φ′′ (0, ω) = Φ′′′ (0, ω) + K0 (ω)Φ (0, ω) = 0,

Φ′′ (1, ω) = Φ′′′ (1, ω)− K1 (ω)Φ (1, ω) = 0,
(11)

where
K0 = K0 (ω) /EI, K1 = K1 (ω) /EI.

4.2. Free vibration of overhead crane with cracks

Thus, satisfying solution (10) with boundary conditions (11) yields the system of
equations with respect to constants C1, . . . , C4 as

C1Φ′′
1 (0, ω) + C2Φ′′

2 (0, ω) + C3Φ′′
3 (0, ω) + C4Φ′′

4 (0, ω) = 0,

C1
[
Φ′′′

1 (0, ω) + K0Φ1 (0, ω)
]
+ C2

[
Φ′′′

2 (0, ω) + K0Φ2 (0, ω)
]

+ C3
[
Φ′′′

3 (0, ω) + K0Φ3 (0, ω)
]
+ C4

[
Φ′′′

4 (0, ω) + K0Φ4 (0, ω)
]
= 0,

C1Φ′′
1 (1, ω) + C2Φ′′

2 (1, ω) + C3Φ′′
3 (1, ω) + C4Φ′′

4 (1, ω) = 0,

C1
[
Φ′′′

1 (1, ω)− K1Φ1 (1, ω)
]
+ C2

[
Φ′′′

2 (1, ω)− K1Φ2 (1, ω)
]

+ C3
[
Φ′′′

3 (1, ω)− K1Φ3 (1, ω)
]
+ C4

[
Φ′′′

4 (1, ω) + K1Φ4 (1, ω)
]
= 0,

that can be rewritten in the matrix form

[B (ω)] {C} = {0} ,

where vector {C} = {C1, . . . , C4}T and matrix [B] is

[B (ω)] =


0 0 0 λ2

0 K0 λ3 0

ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44

 ,

in which the following notations have been used
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ϕ31 = λ2L3 (1) + λ
n

∑
k=1

µ1kL3 (1 − ek) ,

ϕ32 = λ2L4 (1) + λ
n

∑
k=1

µ2kL3 (1 − ek) ,

ϕ33 = λ2L1 (1) + λ
n

∑
k=1

µ3kL3 (1 − ek) ,

ϕ34 = λ2L2 (1) + λ
n

∑
k=1

µ4kL3 (1 − ek) ,

ϕ41 =
[
λ3L4 (1)− K1L1 (1)

]
+

n

∑
k=1

µ1kΓ (1 − ek) ,

ϕ42 =
[
λ3L1 (1)− K1L2 (1)

]
+

n

∑
k=1

µ2kΓ (1 − ek) ,

ϕ43 =
[
λ3L2 (1)− K1L3 (1)

]
+

n

∑
k=1

µ3kΓ (1 − ek) ,

ϕ44 =
[
λ3L3 (1)− K1L4 (1)

]
+

n

∑
k=1

µ4kΓ (1 − ek) ,

Γ (1 − ek) =
[
λ2L4 (1 − ek)− K1L1 (1 − ek)

]
.

Therefore, frequency equation for finding natural frequencies of the simplified over-
head crane is

det [B (ω)] = 0,

that can be expressed in the form

D0 (ω) ≡ λ3 (ϕ31ϕ42 − ϕ41ϕ32)− K0 (ϕ31ϕ43 − ϕ41ϕ33) = 0. (12)

In case of uncracked bridging beam, the latter equation becomes

λ6 [L1 (1) L3 (1)− L2
4 (1)

]
− λ3 (K0 + K1

)
[L2 (1) L3 (1)− L1 (1) L4 (1)]

+K0K1
[
L2

3 (1)− L2
1 (1)

]
= 0,

(13)

or
λ6 (1 − cosh λ cos λ)− λ3 (K0 + K1

)
(sinh λ cos λ − cosh λ sin λ)

+2K0K1 sinh λ sin λ = 0.

Moreover, for the beam with single crack of magnitude γ at position e the frequency
equation (12) is[

λ6d0 (λ)− λ3 (K0 + K1
)

d1 (λ) + K0K1d2 (λ)
]

+ λγ
[
λ6dc

0 (λ, e)− λ3 (K0dc
01 (λ, e) + K1dc

11 (λ, e)
)
+ K0K1dc

2 (λ, e)
]
= 0,

(14)
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where
d0(λ) =

[
L1(1)L3(1)− L2

4(1)
]

,

d1(λ) = [L2(1)L3(1)− L1(1)L4(1)] ,

d2 (λ) = L2
3 (1)− L2

1 (1) ,

dc
0 (λ, e) = {[L1 (1) L3 (e)− L4 (1) L4 (e)] L3 (1 − e)

+ [L3 (1) L4 (e)− L4 (1) L3 (e)] L4 (1 − e)} ,

dc
01 (λ, e) = {[L2 (1) L3 (e)− L4 (1) L1 (e)] L3 (1 − e)

+ [L3 (1) L1 (e)− L1 (1) L3 (e)] L4 (1 − e)} ,

dc
2 (λ, e) = {[L3 (1) L3 (e)− L1 (1) L1 (e)] L3 (1 − e)

+ [L3 (1) L1 (e)− L1 (1) L3 (e)] L1 (1 − e)} ,

dc
11 (λ, e) = [L4 (1) L3 (e)− L3 (1) L4 (e)] L1 (1 − e) .

It is easy to be verified that under γ = 0 the equation (14) is reduced to Eq. (13) and
a crack abolishes the symmetry of the support stiffness effect.

5. NUMERICAL RESULTS AND DISCUSSION

Numerical results provided in this section are obtained for a frame given in Fig. 2
and represented by its reduced model given in Fig. 3, where two supporting beams AB
and CD have been replaced by their dynamic stiffness K0, K1. Thus, vibration of the frame
overhead crane is now investigated by vibration of bridging beam EF exhibited in Fig. 2.
Material and geometry constants of the beams are:

Bridging beam: L = 1 m; b = 0.1 m; h = 0.1 m; E = 200e9 (N/m2); ρ = 7800 kg/m3.

Supporting beams: LAB = LCD = 1 m, bAB = bCD = 0.1 m, hAB = hCD = 0.1 m, EAB =
ECD = 210e9 (N/m2), ρAB = ρAB = 7855 kg/m3.

First, we study the dynamic stiffness of the supporting beams as function of fre-
quency in dependence upon crack parameters and supporting points (called above driven
positions on supporting beams). Then, the fundamental frequency of the simplified over-
head crane is examined along various cracks on either supporting or bridging beams.
Boundary conditions of supporting beams are assumed to be hinged supports.

5.1. Dynamic stiffness analysis

The dynamic stiffness of simply supported beams with single crack is calculated

versus frequency parameter λ = L
(
ω2ρA/EI

)1/4
for various driven points and crack

parameters is presented in Figs. 4 and 5. Fig. 4 shows the dynamic stiffness of uncracked
(a) and cracked (b) beams in different driven points s/L = 0.2, 0.3, 0.5, 0.7, 0.8. It can be
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seen from Fig. 4(a) that symmetrical driven points give the same dynamic stiffness for
uncracked beam, but a crack occurred at the beam destroys the symmetry (Fig. 4(b)).
Namely, even a crack at the beam middle makes the dynamic stiffness obtained for sym-
metrical positions much different excepting the case when dynamic stiffness is defined
also at the beam middle. Furthermore, it is observed the well-known fact that the dy-
namic stiffness vanishes at resonant (natural) frequencies and becomes the infinity (loca-
tion of vertical lines) at the so-called anti-resonant frequencies [14]. Obviously, resonant
frequencies are independent upon position where the dynamic stiffness is measured, for
instance, fundamental frequency of simply supported beam is λ1 = π which can be
clearly seen in Fig. 4(a). While the anti-resonant frequencies are strongly dependent on
the position where the dynamic stiffness is determined.

𝑑((𝜆) = 𝐿2((1) − 𝐿"((1); 
𝑑!7(𝜆, 𝑒) = {[𝐿"(1)𝐿2(𝑒) − 𝐿'(1)𝐿'(𝑒)]𝐿2(1 − 𝑒) + [𝐿2(1)𝐿'(𝑒) − 𝐿'(1)𝐿2(𝑒)]𝐿'(1 − 𝑒)}; 

𝑑017 (𝜆, 𝑒) = {[𝐿((1)𝐿2(𝑒) − 𝐿'(1)𝐿"(𝑒)]𝐿2(1 − 𝑒) + [𝐿2(1)𝐿"(𝑒) − 𝐿"(1)𝐿2(𝑒)]𝐿'(1 − 𝑒)}; 
𝑑(7(𝜆, 𝑒) = {[𝐿2(1)𝐿2(𝑒) − 𝐿"(1)𝐿"(𝑒)]𝐿2(1 − 𝑒) + [𝐿2(1)𝐿"(𝑒) − 𝐿"(1)𝐿2(𝑒)]𝐿"(1 − 𝑒)}; 

𝑑117 (𝜆, 𝑒) = [𝐿'(1)𝐿2(𝑒) − 𝐿2(1)𝐿'(𝑒)]𝐿"(1 − 𝑒).                             (4.15) 

It is easy to be verified that under 𝛾 = 0	the equation (4.14) is reduced to Eq. (4.12) and a crack abolishes 
the symmetry of the support stiffness effect.   

5. NUMERICAL RESULTS AND DISCUSSION 

Numerical results provided in this section are obtained for a frame given in Fig. 2 and represented by its 
reduced model given in Fig. 3, where two supporting beams AB and CD have been replaced by their dynamic 
stiffness 𝐾!, 𝐾". Thus, vibration of the frame overhead crane is now investigated by vibration of bridging beam 
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Supporting beams:      LAB = LCD = 1m, bAB = bCD = 0.1m, hAB = hCD = 0.1m, 
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fundamental frequency of the simplified overhead crane is examined along various cracks on either supporting or 
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Fig. 4. Dynamic stiffness of uncracked (a) and cracked (b) beams dependent on driven location. Crack position 
is the beam middle and crack depth a/h = 30%. 
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Fig. 4. Dynamic stiffness of uncracked (a) and cracked (b) beams dependent on driven location. Crack position 
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Fig. 4. Dynamic stiffness of uncracked (a) and cracked (b) beams dependent on driven location.
Crack position is the beam middle and crack depth a/h = 30%

Fig. 5 presents the dynamic stiffness in dependence of the crack depth for different
combinations of the crack position and driven location: (a) e = L/2, x = L/2; (b) e = L/5, x
= L/5; (c) e = L/5, x = L/2 and (d) e = L/2, x = L/5. It is observed that there is a significant
difference between the dynamic stiffness computed at the locations L/2 and L/5 when
the crack occurred at those driven points. The difference is observed by the absence of
anti-resonant frequencies (vertical lines) existing when both the crack position and driven
location are at the beam middle (L/2) (Fig. 5(a)), while all the anti-resonant frequencies
appear for the locations at the position L/5 (Fig. 5(b)). Finally, all graphs presented in
Fig. 5 show the well-known fact that the crack reduces not only the dynamic stiffness of
beam but also either resonant frequencies or anti-resonant ones.
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Fig. 5 demonstrates the dynamic stiffness in dependence of the crack depth for different combinations of the 
crack position and driven location: a) e = L/2, x = L/2; (b) e = L/5, x = L/5; (c) e = L/5, x = L/2 and d) e = L/2, x = 
L/5. It is observed that there is a significant difference between the dynamic stiffness computed at the locations 
L/2 and L/5 when the crack occurred at those driven points. The difference is observed by the absence of anti-
resonant frequencies (vertical lines) existing when both the crack position and driven location are at the beam 
middle (L/2) (Fig.5a), while all the anti-resonant frequencies appear for the locations at the position L/5 (Fig.5b). 
Finally, all graphs presented in Fig. 5 show the well-known fact that the crack reduces not only the dynamic 
stiffness of beam but also either resonant frequencies or anti-resonant ones. 

 
(a)                                                                                    (b) 

 
(c)                                                                        (d) 

Fig. 5. Dynamic stiffness of cracked beams computed for various crack depth in following cases of crack 
location and driven position: (a) e/L = 0.5, s/L = 0.5; (b) e/L = 0.2, s/L = 0.2; (c) e/L = 0.2; s/L = 0.5 and d) e/L = 

0.5, s/L = 0.2. 
5.2. Fundamental frequency of overhead crane 

First, to validate the theoretical development proposed above, we have calculated fundamental frequency of 
overhead crane in particular case when two support stiffness assumed to be infinite 𝐾! = 𝐾" = 0, that results in 
fundamental frequency equal to 3.14159 (π) as shown in Fig. 4. This is really the case when overhead crane is 
reduced to a simply supported beam. 

Next, the fundamental frequency of overhead crane computed along the crack position on the beam members 
for various crack depth and supporting locations is depicted in Fig. 6 – 8. Fig. 6 presents the variation of 
fundamental frequency of overhead crane due to crack occurred in bridging beam in case of uncracked (Fig.6a) 
and cracked (Fig.6b) supporting beams. Graphs given in Fig. 6a  exhibit the crack-induced change in fundamental 
frequency of a beam with artificial elastic supports and show significant effect of the supports compared to those 
of simply supported beam provided in [10]. Namely, the fundamental frequency of a simply supported beam may 
decrease by about 12% due to a crack of 40% depth, as seen in [10], while that crack can reduce the fundamental 
frequency of a beam with artificial elastic supports to 36%. Observing the graphs depicted in Fig.6b, one can 
reveal an interesting fact that a crack in supporting beams could considerably decrease the frequency sensitivity 
to a crack in the bridging beam. A crack of depth 40% in the supporting beams could reduce the change induced 
by crack in bridging beam from 36% to 8% (Fig.6b). 

(a) e/L = 0.5, s/L = 0.5

Fig. 5 demonstrates the dynamic stiffness in dependence of the crack depth for different combinations of the 
crack position and driven location: a) e = L/2, x = L/2; (b) e = L/5, x = L/5; (c) e = L/5, x = L/2 and d) e = L/2, x = 
L/5. It is observed that there is a significant difference between the dynamic stiffness computed at the locations 
L/2 and L/5 when the crack occurred at those driven points. The difference is observed by the absence of anti-
resonant frequencies (vertical lines) existing when both the crack position and driven location are at the beam 
middle (L/2) (Fig.5a), while all the anti-resonant frequencies appear for the locations at the position L/5 (Fig.5b). 
Finally, all graphs presented in Fig. 5 show the well-known fact that the crack reduces not only the dynamic 
stiffness of beam but also either resonant frequencies or anti-resonant ones. 
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Fig. 5. Dynamic stiffness of cracked beams computed for various crack depth in following cases of crack 
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(b) e/L = 0.2, s/L = 0.2

Fig. 5 demonstrates the dynamic stiffness in dependence of the crack depth for different combinations of the 
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Finally, all graphs presented in Fig. 5 show the well-known fact that the crack reduces not only the dynamic 
stiffness of beam but also either resonant frequencies or anti-resonant ones. 
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reveal an interesting fact that a crack in supporting beams could considerably decrease the frequency sensitivity 
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Fig. 5 demonstrates the dynamic stiffness in dependence of the crack depth for different combinations of the 
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Fig. 5. Dynamic stiffness of cracked beams computed for various crack depth in following cases of crack 
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0.5, s/L = 0.2. 
5.2. Fundamental frequency of overhead crane 

First, to validate the theoretical development proposed above, we have calculated fundamental frequency of 
overhead crane in particular case when two support stiffness assumed to be infinite 𝐾! = 𝐾" = 0, that results in 
fundamental frequency equal to 3.14159 (π) as shown in Fig. 4. This is really the case when overhead crane is 
reduced to a simply supported beam. 
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for various crack depth and supporting locations is depicted in Fig. 6 – 8. Fig. 6 presents the variation of 
fundamental frequency of overhead crane due to crack occurred in bridging beam in case of uncracked (Fig.6a) 
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to a crack in the bridging beam. A crack of depth 40% in the supporting beams could reduce the change induced 
by crack in bridging beam from 36% to 8% (Fig.6b). 

(d) e/L = 0.5, s/L = 0.2

Fig. 5. Dynamic stiffness of cracked beams computed for various crack depths in different cases
of crack location and driven position

5.2. Fundamental frequency of overhead crane

First, to validate the theoretical development proposed above, we have calculated
the fundamental frequency of the overhead crane in a particular case when the stiffness
of two supports is assumed to be infinite K0 = K1 = ∞, which results in a fundamental
frequency equal to 3.14159 (π). This is the case when the overhead crane is reduced to a
simply supported beam.

Next, the fundamental frequency of overhead crane computed along the crack posi-
tion on the beam members for various crack depths and supporting locations is depicted
in Figs. 6–8. Fig. 6 presents the variation of fundamental frequency of overhead crane due
to crack occurred in bridging beam in case of uncracked (Fig. 6(a)) and cracked (Fig. 6(b))
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supporting beams. Graphs given in Fig. 6(a) exhibit the crack-induced change in fun-
damental frequency of a beam with artificial elastic supports and show significant effect
of the supports compared to those of simply supported beam provided in [10]. Namely,
the fundamental frequency of a simply supported beam may decrease by about 12% due
to a crack of 40% depth, as seen in [10], while that crack can reduce the fundamental
frequency of a beam with artificial elastic supports to 36%. Observing the graphs de-
picted in Fig. 6(b), one can reveal an interesting fact that a crack in supporting beams
could considerably decrease the frequency sensitivity to a crack in the bridging beam. A
crack of depth 40% in the supporting beams could reduce the change induced by crack
in bridging beam from 36% to 8% (Fig. 6(b)).

Fig. 7 demonstrates the frequency ratio of cracked crane to uncracked one plotted versus crack position on 
supporting beams in various the crack depth for uncracked (Fig.7a) and cracked (Fig.7b) bridging beam. The 
graphs provided in Fig. 6 are not symmetrical about the beam middle as those given in Fig. 6. This is a typical 
effect of crack in supporting beams on fundamental frequency of the overhead crane. Moreover, it is observed in 
Fig. 7b that the horizontal line corresponding to uncracked supporting beams represents maximal change in the 
frequency due to crack of 30% depth occurred in bridging beam as shown in Fig. 5a.  
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Fig. 6. Fundamental frequency of overhead crane versus crack position on bridging beam for various (a) depth 
of crack in bridging beam buoyed on uncracked supporting beams with s/L = 0.5; (b) depth of crack in 

supporting beams and cracked bridging beam with depth a/h = 0.3. 
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Fig. 6. Fundamental frequency of overhead crane versus crack position on bridging beam for
various (a) depth of crack in bridging beam buoyed on uncracked supporting beams with s/L =

0.5; (b) depth of crack in supporting beams and cracked bridging beam with depth a/h = 0.3

Fig. 7 demonstrates the frequency ratio of cracked crane to uncracked one plot-
ted versus crack position on supporting beams in various crack depths for uncracked
(Fig. 7(a)) and cracked (Fig. 7(b)) bridging beam. The graphs provided in Fig. 6 are not
symmetrical about the beam middle as those given in Fig. 6. This is a typical effect of
crack in supporting beams on fundamental frequency of the overhead crane. Moreover,
it is observed in Fig. 7(b) that the horizontal line corresponding to uncracked supporting
beams represents maximal change in the frequency due to crack of 30% depth occurred
in bridging beam as shown in Fig. 5(a).

Fig. 8 exhibits the effect of supporting locations on cracked crane’s fundamental fre-
quency, where graphs are plotted versus crack position on bridging beam in three cases
of supporting beams: (Fig. 8(a)) uncracked, (Fig. 8(b)) cracked at their middles, and (c)
cracked at symmetrical positions es/Ls = 1/3 and 2/3. Obviously, for the crane with
intact supporting beams, the effect is symmetrical regarding both crack position on the
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Fig. 7. Fundamental frequency of overhead crane versus crack position on supporting beams in
case of (a) uncracked and (b) cracked bridging beams. Supporting locations are the beams middle

and normalization by frequency of uncracked crane

bridging beam and supporting points on the supporting beams. Also, the effect increases
as the supporting points move away from the beams’ middle to their ends. In case when
the supporting beams are cracked the symmetry of the effect is not maintained for sup-
porting locations regardless of where a crack appears in the supporting beams. However,
supporting positions on the left of the beam’s span (s < L/2) make more reduction of the
frequency than those on the right (s > L/2). Furthermore, it can be seen in Fig. 8(c)
that cracks on opposite sides of the supporting beams’ middle decrease the frequency
reduction due to crack in bridging beam.
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Fig. 8. Effect of supporting point on fundamental frequency of overhead crane versus crack position on bridging 
beam (a/h = 0.3) in case of supporting beams (a) uncracked, cracked with depth as/Ls= 0.3 (b) at their middle 

and (c) at the symmetric positions, eAB=Ls/3, eCD=2Ls/3. 

Fig. 8 exhibits the effect of supporting locations on cracked crane’s fundamental frequency, where graphs are 
plotted versus crack position on bridging beam in three cases of supporting beams: (Fig8a) uncracked, (Fig.8b) 
cracked at their middles, and (c) cracked at symmetrical positions 𝑒@/𝐿@ = 1/3	&	2/3. Obviously, for the crane 
with intact supporting beams, the effect is symmetrical regarding both crack position on the bridging beam and 
supporting points on the supporting beams. Also, the effect increases as the supporting points move away from 
the beams' middle to their ends. In case when the supporting beams are cracked the symmetry of the effect is not 
maintained for supporting locations regardless of where a crack appears in the supporting beams. However, 
supporting positions on the left of the beam's span (s < L/2) make more reduction of the frequency than those on 
the right (s > L/2). Furthermore, it can be seen in Fig.8c that cracks on opposite sides of the supporting beams' 
middle decrease the frequency reduction due to crack in bridging beam.   

6. CONCLUSION 

The present study addresses a novel application of the dynamic stiffness method for modal analysis of a 3D-
overhead crane consisting mainly of three beam members, one of which is supported by two others. The former 
member is called the bridging beam, and the two other ones are named after supporting beams. The essential 
content of the novel application is modeling the 3D-framed crane structure by an equivalent beam with artificial 
elastic supports of stiffness defined as the dynamic stiffness of the supporting beams. 

Therefore, the first result obtained in this study is an expression of dynamic stiffness defined at a position on 
a cracked beam. This stiffness is a frequency domain function dependent also on the crack parameters and position 
on beam where the dynamic stiffness has been determined. 
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Fig. 8. Effect of supporting point on fundamental frequency of overhead crane versus crack posi-
tion on bridging beam (a/h = 0.3) in case of supporting beams (a) uncracked, cracked with depth

as/Ls= 0.3 (b) at their middle and (c) at the symmetric positions, eAB = Ls/3, eCD = 2Ls/3

6. CONCLUSIONS

The present study addresses a novel application of the dynamic stiffness method for
modal analysis of a 3D-overhead crane consisting mainly of three beam members, one
of which is supported by two others. The former member is called the bridging beam,
and the two other ones are named after supporting beams. The essential content of the
novel application is modeling the 3D-framed crane structure by an equivalent beam with
artificial elastic supports of stiffness defined as the dynamic stiffness of the supporting
beams.

Therefore, the first result obtained in this study is an expression of dynamic stiffness
defined at a position on a cracked beam. This stiffness is a frequency domain function de-
pendent also on the crack parameters and position on beam where the dynamic stiffness
has been determined.

Next, vibration shape has been conducted for a cracked beam with elastic supports
of stiffness parameters defined above as dynamic stiffness representing the supporting
beams with cracks. This provides the vibration shape of an equivalently simplified 3D-
framed structure with cracks and used for modal analysis of a cracked overhead crane.

Numerical results obtained herein allow one to draw the following concluding re-
marks:

- The dynamic stiffness defined as the inverse of the frequency response function for
a cracked beam is a consistent description of vibration behavior in cracked beams. This
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dynamic stiffness of cracked beams can be reliably employed for modeling the support-
ing beams in a 3D-framed overhead crane.

- The simplified model of the framed overhead crane allows one to capture not only
the presence of the supporting beams but also the effect of cracks in these members on the
fundamental frequency of the frame crane. It is also observed that cracks in supporting
beams may reduce the change in the crane fundamental frequency caused by cracks in
the bridging beam. This fact verifies an interaction between cracks in all members of the
crane as a total frame structure.

- The effect of positions where the bridging beam is rested on supporting beams on
the overhead crane fundamental frequency has also been investigated. It is revealed that
the effect is significantly dependent on whether supporting beams are cracked and where
they undergo the cracks.

Finally, it can be concluded that the established in this study model can be used for
the analysis of the dynamics of the 3D-framed overhead cranes under moving load, the
more realistic working state of cranes in general.
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