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Abstract. In this paper, we study the propagation of Rayleigh waves in nonlocal ortho-
tropic half-spaces coated by a nonlocal orthotropic layer with sliding contact using the
weakly nonlocal elasticity model. This model was recently introduced and different from
other existing nonlocal models it has been proven to be well-posed for all harmonic plane
wave problems. The transfer matrix method and the effective boundary condition method
are employed for deriving the explicit dispersion equation of Rayleigh waves. Using
the obtained dispersion equation, the effect of the nonlocality and the thickness of the
layer on the velocity of Rayleigh waves is considered through some numerical exam-
ples. It is shown that the nonlocality and the thickness of the layer strongly affect the
velocity of Rayleigh waves and they make it decreasing. Since the dispersion equation of
Rayleigh waves is totally explicit, it will be a powerful tool for monitoring the health of
the layer/half-space structures during loading.

Keywords: Rayleigh waves, weakly nonlocal elasticity model, sliding contact, explicit dis-
persion equation.

1. INTRODUCTION

The structure of an elastic half-space coated by an elastic layer has a wide range of ap-
plications such as those in seismology, acoustics, geophysics, materials science and micro-
electro-mechanical systems. The nondestructive measurement of mechanical properties
of these structures before and during loading is therefore important and significant. As
we know, Rayleigh waves are a convenient tool for this task [1]. When using Rayleigh
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waves, their explicit secular equations are employed as mathematical basis for extracting
the mechanical properties of layers from experimental data (measured values of wave
velocity). Thus, they are the main purpose of any investigation on Rayleigh waves prop-
agating in elastic half-spaces covered by an elastic layer.

With the rapid development of science and technology, devices in different applica-
tions such as medical devices, electronic devices, computer chips, etc. are required to be
smaller and smaller. Thus, nano-scale materials and structures have received intensive
attention of researchers. The classical elasticity is unable to predict properly the nature
of such nano-scale materials. For instance, the behaviour of materials with fractures, dis-
location, cracks, singularities and discontinuities can not be treated completely by the
classical (local) elasticity theory [2–4]. Therefore, to explain and predict the physical phe-
nomena at small length scales, that is, at nano-scales, a series of nonlocal continuum
mechanics have been developed including Eringen’s fully nonlocal model [5], Eringen’s
two-phase local/nonlocal model [6, 7], stress-driven nonlocal model [8], nonlocal strain
gradient model [9] and weakly nonlocal elasticity model [10]. Among these nonlocal
elasticity models, the weakly nonlocal elasticity model has been proven to be well-posed
for any harmonic plane wave problem [10, 11], Eringen’s fully nonlocal model has been
shown to be ill-posed for harmonic plane wave problems of which constitutive bound-
ary conditions do not contain all equilibrium boundary conditions [12], and it is still
unclear whether the remaining models are well-posed or not for problems of harmonic
plane waves. Therefore, the weakly nonlocal elasticity model proposed recently by Anh
and Vinh [10] is the best choice as a theoretical model for studying the propagation of
nonlocal harmonic plane waves.

In this paper, we employ the weakly nonlocal elasticity theory to study the prop-
agation of Rayleigh waves in nonlocal orthotropic half-spaces coated by a nonlocal or-
thotropic layer with sliding contact. The main aim is to derive the explicit dispersion
equation of nonlocal Rayleigh waves. It has been obtained by employing the transfer
matrix method along with the effective boundary condition technique. Based on it, the
effect of the nonlocality and the thickness of the layer on the velocity of Rayleigh waves
is considered through some numerical examples. It is shown numerically that the non-
locality (of the layer and the half-space) and the thickness of layer strongly affect the
velocity of Rayleigh waves and they make it decreasing. Since the dispersion equa-
tion of Rayleigh waves is totally explicit, it will be a powerful tool for monitoring the
health of the layer/half-space structures during loading. It should also be noted that the
weakly nonlocal elasticity theory has been employed to study the propagation of nonlo-
cal Rayleigh waves [11, 13], nonlocal Stoneley waves [10] and nonlocal Lamb waves in a
layered nonlocal elastic layer [14].
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There have been several investigations on Rayleigh waves propagating in nonlocal
elastic half-spaces coated by a nonlocal elastic layer. They are the investigation [15] for
Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-
space, the work [16] for Rayleigh waves in a porous nonlocal orthotropic thermoelastic
layer lying over porous nonlocal orthotropic thermoelastic half-space, the studies [17,18]
for Rayleigh waves in a layered structure constituted of nonlocal functionally gradient
transversely isotropic stratum lying over a nonlocal functionally gradient monoclinic
substrate and the contribution [13] for Rayleigh waves in a nonlocal orthotropic elas-
tic half-space coated by a nonlocal orthotropic elastic layer. It is noted that the Rayleigh
wave problems studied in investigations [15–18] have no solutions, according to the well-
posedness criterion for harmonic plane wave problems of Eringen’s nonlocal elasticity
theory [12]. These problems will be reconsidered by the weakly nonlocal elasticity the-
ory [10, 11] which has been proven to be well-posed for any harmonic plane wave prob-
lem.

2. TRANSFER MATRIX FOR A WEAKLY NONLOCAL ORTHOTROPIC LAYER

Consider a nonlocal orthotropic elastic layer of uniform thickness h occupying the
domain a ≤ x2 ≤ b, b − a = h. We are interested in the in-plane motion in the plane
(x1, x2) whose displacement components are of the form

ui = ui (x1, x2, t) , i = 1, 2, u3 ≡ 0, (1)

where t is the time. Suppose the layer’s material is weakly nonlocal elastic (see Anh and
Vinh [10], Anh et al. [11]). Then, in the absence of body forces, the equations of motion
are

t11,1 + t12,2 = ρü1, t12,1 + t22,2 = ρü2, (2)

where ρ is the mass density, subscript commas signify differentiation with respect to xk
and a dot represents the partial time derivative with respect to t; tij are the nonlocal stress
components that are related to the corresponding local stresses σij by the differential re-
lations

σ11 = (1 − ϵ2∇2)t11, σ12 = (1 − ϵ2∇2)t12, σ22 = (1 − ϵ2∇2)t22, (3)

along with the extra conditions

σij ≡ 0 ⇒ tij ≡ 0 (i, j = 1, 2), (4)

where ∇ =

[
∂

∂x1
,

∂

∂x2

]T

and ϵ = e0l is the nonlocal parameter, with e0 is the material

constant and l is the internal characteristic length. Applying operation L = 1 − ϵ2∇2 to
the original equations of motion (2) and using (3) yield

σ11,1 + σ12,2 = ρü1 − ρϵ2(ü1,11 + ü1,22), σ12,1 + σ22,2 = ρü2 − ρϵ2(ü2,11 + ü2,22). (5)
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Since the layer is made of compressible orthotropic elastic materials, the local stresses σij

are expressed in terms of displacements by

σ11 = c11u1,1 + c12u2,2, σ22 = c12u1,1 + c22u2,2, σ12 = c66 (u1,2 + u2,1) , (6)

where cij (i, j = 1, 2, 6) are the stiffness elastic constants. Using (6) into (5), we obtain

c11u1,11 + c66u1,22 + (c12 + c66)u2,12 = ρü1 − ρϵ2(ü1,11 + ü1,22),

(c12 + c66)u1,12 + c66u2,11 + c22u2,22 = ρü2 − ρϵ2(ü2,11 + ü2,22).
(7)

Since the operator L is invertible due to the extra conditions (4), the original equations of
motion (2) are equivalent to the resulting equations of motion (7). Hence, Eqs. (7) will be
used instead of equations (2). Consider a plane wave propagating in the x1-direction with
velocity c (> 0) and wavenumber k (> 0). Then, its displacement and stress components
are of the form

u1 = U1(x2)eik(x1−ct), u2 = U2(x2)eik(x1−ct),

t12 = kT1(x2)eik(x1−ct), t22 = kT2(x2)eik(x1−ct),
(8)

where Uj(x2) and Tj(x2) (j = 1, 2) are functions to be determined. Define U =
[
U1 U2

]T,

T =
[
T1 T2

]T and ξ(x2) =
[
U(x2) T(x2)

]T. According to Anh et al. [14], we have

ξ (a) = Nξ (b) , (9)

where

N =

[
N1 N2
N3 N4

]
, (10)

matrices Nj (j = 1, 2, 3, 4) are given by

N1 =


[γ; chε]

[γ]
− i [β; shε]

[α; β]

i [αshε; γ]

[γ]

[αchε; β]

[α; β]

 , N2 =


− [α; shε]

[α; β]
− i [chε]

[γ]

− iα1α2 [chε]

[α; β]
− [αshε]

[γ]

 ,

N3 =


[βshε; γ]

[γ]
− iβ1β2 [chε]

[α; β]

− iγ1γ2 [chε]

[γ]

[β; γshε]

[α; β]

 , N4 =


[α; βchε]

[α; β]

i [βshε]

[γ]

− i [α; γshε]

[α; β]

[γchε]

[γ]

 . (11)

Here, we use the following notations

[ f ] = f2 − f1, [ f ; g] = f2g1 − f1g2, (12)
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and αj, β j, γj in (11) are calculated by

αj =
(c12 + c66)bj

c∗66 − X − c∗22b2
j

, β j =
c66(bj − αj)

1 + e(1 − b2
j )

, γj =
c12 + c22bjαj

1 + e(1 − b2
j )

, j = 1, 2

b1 =

√
S +

√
S2 − 4P
2

, b2 =

√
S −

√
S2 − 4P
2

,

S = − c∗22(X − c∗11) + c∗66(X − c∗66) + (c12 + c66)2

c∗22c∗66
, P =

(c∗11 − X)(c∗66 − X)

c∗22c∗66
,

(13)

where

c∗22 = c22 − Xe, c∗66 = c66 − Xe, c∗11 = c11 − Xe, X = ρc2, e = k2ϵ2, (14)

and in (11) we have: ε j = εbj (j = 1, 2), ε = kh. From (9) we have

ξ (b) = N̂ξ (a) , N̂ = N−1. (15)

By changing the direction of x2-axis, we can see that matrix N̂ is determined by (11) in
which ε is replaced by −ε. In particular, matrix N̂ is of the form

N̂ =

[
N̂1 N̂2
N̂3 N̂4

]
, (16)

with matrices N̂j (j = 1, 4) are determined by

N̂1 =


[γ; chε]

[γ]

i [β; shε]

[α; β]

− i [αshε; γ]

[γ]

[αchε; β]

[α; β]

 , N̂2 =


[α; shε]

[α; β]
− i [chε]

[γ]

− iα1α2 [chε]

[α; β]

[αshε]

[γ]

 ,

N̂3 =


− [βshε; γ]

[γ]
− iβ1β2 [chε]

[α; β]

− iγ1γ2 [chε]

[γ]
− [β; γshε]

[α; β]

 , N̂4 =


[α; βchε]

[α; β]
− i[βshε]

[γ]

i [α; γshε]

[α; β]

[γchε]

[γ]

 . (17)

Matrices N and N̂ given by (10) and (16) are called the transfer matrices for a weakly
nonlocal compressible orthotropic elastic layer. Note that in deriving (10)–(17) we assume
that b1 ̸= b2.



114 Pham Chi Vinh, Vu Thi Ngoc Anh, Nguyen Thi Nga

3. EXPLICIT DISPERSION EQUATION OF RAYLEIGH WAVES

3.1. Effective boundary condition

Let us consider a medium which consists of a nonlocal orthotropic layer of arbitrary
thickness h occupying the domain −h ≤ x2 ≤ 0 lying over a nonlocal orthotropic half-
space x2 ≥ 0. It is assumed that the contact between the half-space and the layer is a
sliding contact and the top surface of the layer x2 = −h is free from traction. Note that
the same quantities related to the half-space and the layer have the same symbol but are
systematically distinguished by a bar if pertaining to the layer.

From the traction-free condition: t̄12 = 0 and t̄22 = 0 at x2 = −h, using (9), (10) and
(11) with a = −h, b = 0, we obtain

n31Ū1(0) + n32Ū2(0) + n33T̄1(0) + n34T̄2(0) = 0,

n41Ū1(0) + n42Ū2(0) + n43T̄1(0) + n44T̄2(0) = 0,
(18)

where n31, n32 and n41, n42 are respectively elements of the first row and the second row
of matrix N3; n33, n34 and n43, n44 are respectively elements of the first row and the second
row of matrix N4; N3 and N4 are determined by (11). Since the contact between the layer
and the half-space is a sliding contact, we have

t12 = 0, t̄12 = 0, t22 = t̄22, u2 = ū2 at x2 = 0, (19)

or, in view of the relations (8)

T1(0) = 0, T̄1(0) = 0, T2(0) = T̄2(0), U2(0) = Ū2(0). (20)

Using (20) into (18) yields

(n32n41 − n31n42)U2(0) + (n34n41 − n31n44)T2(0) = 0. (21)

From the first of (20) and (21), we see that the surface x2 = 0 of the half-space is subjected
to the following conditions

T1(0) = 0,

(n32n41 − n31n42)U2(0) + (n34n41 − n31n44)T2(0) = 0.
(22)

The second of (22) is the desired effective boundary condition. The total effect of the layer
on the half-space is replaced by this condition.

3.2. Explicit dispersion equation of Rayleigh waves

Now we can ignore the layer and consider the propagation of Rayleigh waves in
the nonlocal orthotropic elastic half-space x2 ≥ 0 subject to the boundary conditions (22)
with wave velocity c (> 0) and wavenumber k (> 0) in the x1-direction and decaying in
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the x2-direction. It is not difficult to verify that the displacements of the Rayleigh wave
in the half-space are given by (8)1,2 with U1(y) and U2(y) are determined by

U1(y) = B1e−b1y + B2e−b2y, U2(y) = i
(

α1B1e−b1y + α2B2e−b2y
)

, (23)

with B1 and B2 are constants to be determined and

αj = −
(c12 + c66)bj

c∗66 − X − c∗22b2
j

, j = 1, 2 (24)

in which c∗66 = c66 − Xe, c∗22 = c22 − Xe, X = ρc2, e = ϵ2k2, b1 and b2 are two roots with
positive real part of the following characteristic equation

b4 − Sb2 + P = 0, (25)

where S, P are given by (13)6,7. One can see that if a Rayleigh wave exists (⇒ the real
parts of b1 and b2 must be positive) it implies (see also Vinh [19] and Vinh & Seriani [20])

P > 0, S + 2
√

P > 0, b1b2 =
√

P, b1 + b2 =

√
S + 2

√
P. (26)

From (23), (8)1,2 and (6) we deduce

σ12 = −k[c66(b1 + α1)B1e−b1y + c66(b2 + α2)B2e−b2y] eik(x1−ct), (27)

σ22 = ik[(c12 − c22b1α1)B1e−b1y + (c12 − c22b2α2)B2e−b2y] eik(x1−ct).

Using (27) into (3) and taking into account (4) we have

t12 = kT1(y)eik(x1−ct), t22 = kT2(y)eik(x1−ct), (28)

where

T1(y) = β1B1e−b1y + β2B2e−b2y, T2(y) = i(γ1B1e−b1y + γ2B2e−b2y), (29)

with

β j = −
c66(bj + αj)

1 + e(1 − b2
j )

, γj =
c12 − c22bjαj

1 + e(1 − b2
j )

, j = 1, 2. (30)

Taking x2 = 0 in (23)2 and (29) we obtain

U2(0) = i(α1B1 + α2B2),

T1(0) = β1B1 + β2B2, T2(0) = i(γ1B1 + γ2B2).
(31)

Substituting (31) into (22) gives a homogeneous system of two linear equations for B1 and
B2. For a non-trivial solution, the determinant of coefficients of this system must vanish.
This gives the equation(

n32n41 − n31n42

)
[α; β] +

(
n34n41 − n31n44

)
[γ; β] = 0. (32)

Using (11), (24), and (30) into (32), we find

A0 + B0shε1shε2 + C0shε1chε2 + D0chε1shε2 + E0chε1chε2 = 0, (33)
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where the coefficients A0, B0, C0, D0, and E0 are determined by

A0 = 2β̄1 β̄2γ̄1γ̄2(c∗11 − X)
[
1 +

e
c∗22

(c12 + c22 + X)
]√

S + 2
√

P,

B0 = (β̄1
2
γ̄2

2 + β̄2
2
γ̄2

1)(c
∗
11 − X)

[
1 +

e
c∗22

(c12 + c22 + X)
]√

S + 2
√

P,

C0 = −β̄1γ̄2[ᾱ; β̄]
{[

c2
12 − c22(c∗11 − X) + c12Xe

]√
P + X(c∗11 − X)

c12e + c22(1 + e)
c∗22

}
,

D0 = β̄2γ̄1[ᾱ; β̄]
{[

c2
12 − c22(c∗11 − X) + c12Xe

]√
P + X(c∗11 − X)

c12e + c22(1 + e)
c∗22

}
,

E0 = −A0.
(34)

Eq. (33) is the desired dispersion equation of Rayleigh waves propagating in a weakly
nonlocal compressible orthotropic elastic half-space coated by a weakly nonlocal com-
pressible orthotropic elastic layer with the sliding contact. It is clear that Eq. (33) is totally
explicit. When ε → 0, from (33) and (34), we have[

c2
12 − c22(c∗11 − X) + c12Xe

]√
P + X(c∗11 − X)

c12e + c22(1 + e)
c∗22

= 0. (35)

This equation is the dispersion equation of Rayleigh waves propagating in a weakly non-
local compressible orthotropic half-space derived by Anh and Vinh [13]. If we neglect the
nonlocality, i.e., e = ē = 0, Eq. (33) is identical to Eq. (35) in Ref. [21], which is the secular
equation of Rayleigh waves propagating in a (local) compressible orthotropic elastic half-
space coated by a (local) compressible orthotropic elastic layer with the sliding contact.

In the dimensionless form, Eq. (33) takes the form

Ā0 + B̄0shε1shε2 + C̄0shε1chε2 + D̄0chε1shε2 + Ē0chε1chε2 = 0, (36)

where

Ā0 = 2β̄∗
1 β̄∗

2γ̄∗
1 γ̄∗

2(e1 − ex − x)
[
e2 + e(e2 + e3)

]√
S + 2

√
P,

B̄0 = (β̄∗
1

2
γ̄∗

2
2
+ β̄∗

2
2
γ̄∗

1
2
)(e1 − ex − x)

[
e2 + e(e2 + e3)

]√
S + 2

√
P,

C̄0 = −β̄∗
1γ̄∗

2 [ᾱ
∗; β̄∗]

{
(e2 − ex)

[
e2

3 − e2(e1 − ex − x) + ee3x
]√

P

+ x(e1 − ex − x)[ee3 + (1 + e)e2]
}

,

D̄0 = β̄∗
2γ̄∗

1 [ᾱ
∗; β̄∗]

{
(e2 − ex)

[
e2

3 − e2(e1 − ex − x) + ee3x
]√

P

+ x(e1 − ex − x)[ee3 + (1 + e)e2]
}

,

Ē0 = −Ā0,

(37)
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where

x =
ρc2

c66
, e1 =

c11

c66
, e2 =

c22

c66
, e3 =

c12

c66
, ē1 =

c̄11

c̄66
, ē2 =

c̄22

c̄66
, ē3 =

c̄12

c̄66
,

rµ =
c̄66

c66
, rv =

c2

c̄2
, c2 =

√
c66

ρ
, c̄2 =

√
c̄66

ρ̄
, e = k2ϵ2, ē = k2ϵ̄2,

(38)

and

ᾱ∗
j =

(ē3 + 1)b̄j

1 − ēr2
vx − r2

vx − (ē2 − ēr2
vx)b̄2

j
, β̄∗

j =
rµ(b̄j − ᾱ∗

j )

1 + ē(1 − b̄2
j )

, γ̄∗
j = rµ

ē3 + ē2b̄jᾱ
∗
j

1 + ē(1 − b̄2
j )

,

S =
[e1 − x(1 + e)](e2 − ex) + [1 − x(1 + e)](1 − ex)− (e3 + 1)2

(1 − ex)(e2 − ex)
,

P =
[e1 − x(1 + e)][1 − x(1 + e)]

(1 − ex)(e2 − ex)
,

(39)

with b̄1, b̄2 are determined by (13)4,5 with the bar and S̄, P̄ are calculated by

S̄ =

[
ē1 − r2

vx(1 + ē)
]
(ē2 − ēr2

vx) +
[
1 − (1 + ē)r2

vx
]
(1 − ēr2

vx)− (ē3 + 1)2

(1 − ēr2
vx)(ē2 − ēr2

vx)
,

P̄ =

[
ē1 − (1 + ē)r2

vx
][

1 − (1 + ē)r2
vx
]

(1 − ēr2
vx)(ē2 − ēr2

vx)
.

(40)

4. NUMERICAL EXAMPLES

In order to illustrate the obtained theoretical results, some numerical examples are
carried out to show the effect of the nonlocality and the thickness of layer on the Rayleigh
wave velocity. The obtained numerical results are presented in Figs. 1, 2, and 3. Figs. 1
and 2 show respectively the dependence of the Rayleigh wave velocity on the dimen-
sionless thickness of layer ε = kh and the dimensionless nonlocality parameter e. Fig. 3
shows influence of the local/nonlocal combination of the layer/half-space structure on
the Rayleigh wave velocity.

0 0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1. Dependence of the Rayleigh wave velocity on ε ∈ [0, 1.5]. Here we take e1 = 2, e2 =
2.2, e3 = 0.5, e = 0.2 for the half-space, ē1 = 2.5, ē2 = 3.2, ē3 = 0.8, ē = 0.3 for the layer and

rv = 1.8, rµ = 1.2
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It is seen from Fig. 1 that the Rayleigh wave velocity decreases when increasing the
dimensionless thickness ε of the layer: very strongly in the interval [0, 0.5], strongly in
the interval [0.5, 1] and then it goes slowly to the velocity of Stoneley waves propagating
in two half-spaces characterized by cij, ρ, e and c̄ij, ρ̄, ē as ε → +∞. Fig. 2 shows that
the Rayleigh wave velocity decreases when increasing the dimensionless nonlocality pa-
rameter e. This fact is agreeable to the softing behavior of strain-driven nonlocal elastic
solids including weakly nonlocal elastic materials. Fig. 3 indicates that among four lo-
cal/nonlocal combinations of the layer/half-space structure, the Rayleigh wave velocity
is the biggest when both the layer and the half-space are local, the smallest when they are
both nonlocal, the Rayleigh wave velocity for the local/nonlocal combination is smaller
than the one for the nonlocal/local case. These facts say that the nonlocality decreases
Rayleigh wave velocity and the nonlocality of the half-space affects the Rayleigh wave
velocity more strongly than the one of the layer. It is noted that the numerical results
have been verified by checking the traction-free boundary condition at x2 = −h.
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Fig. 2. Dependence of the Rayleigh wave velocity on the nonlocality e ∈ [0, 1]. Here we take
e1 = 2, e2 = 2.2, e3 = 0.5 for the half-space, ē1 = 2.5, ē2 = 3.2, ē3 = 0.8, ē = 0.1 for the layer and

rv = 1.8, rµ = 1.2 and ε = 0.2

Fig. 3. Dependence of the Rayleigh wave velocity on ε ∈ [0, 1.5] with different local/nonlocal
combinations of the layer and the half-space. Here we take e1 = 2, e2 = 2.2, e3 = 0.5, ē1 =
2.5, ē2 = 3.2, ē3 = 0.8, rv = 1.8, rµ = 1.2, e = 0.2 for the nonlocal half-space, ē = 0.2 for the

nonlocal layer
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5. CONCLUSIONS

In this paper, the propagation of Rayleigh waves in a nonlocal orthotropic half-space
coated by a nonlocal orthotropic layer with sliding contact is studied. In contrast to pre-
vious studies which employed the ill-posed Eringren’s nonlocal elasticity theory, this
investigation used the weakly nonlocal elasticity model which has been proven to be
well-posed for any harmonic plane wave problem. The dispersion equation of Rayleigh
waves has been derived in the explicit form by using the transfer matrix method and the
effective boundary condition method. It recovers the secular equation of Rayleigh waves
propagating in a local orthotropic half-space coated by a local orthotropic layer with slid-
ing contact. Since the dispersion equation of Rayleigh waves is totally explicit, it will be
a powerful tool for monitoring the health of the layer/half-space structures during load-
ing. Especially, it will be a convenient tool for evaluating the nonlocality parameters of
layer and half-space which are difficult to determine by experiments.
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